

13.3 inch E-paper Display Series GDEP133C02

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	13.3" E-PAPER DISPLAY
Model Name	GDEP133C02
Date	2024/05/30
Revision	1.0

Design Engineering			
Approval Check Design			
宝刘印玉	燕修印凤	之吴印良	

No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

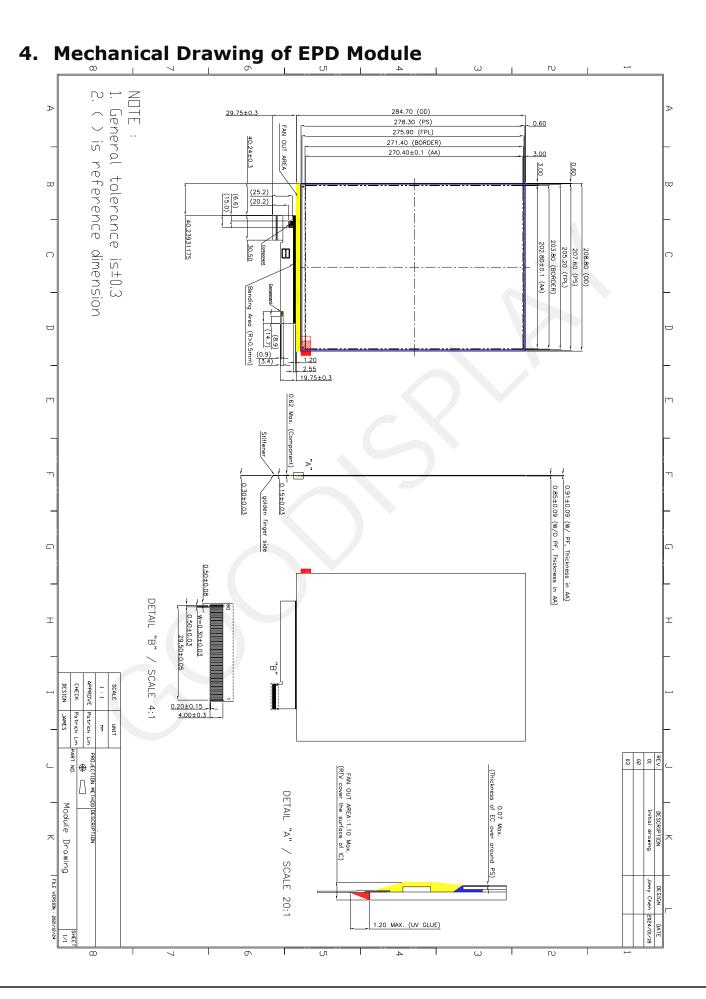
Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

CONTENTS

NO.	ITEM	PAGE		
-	Cover	1		
-	Product Specifications	2		
-	Contents	3		
1	General Description	4		
2	Features	4		
3	Mechanical Specifications	4		
4	Mechanical Drawing of EPD module			
5	Input / Output Interface			
6	Electrical Characteristics			
7	Power Characteristics	21		
8	Optical Characteristics	23		
9	Handling, Safety, and Environment Requirements and Remark	25		
10	Reliability Test	26		
11	Block Diagram			
12	Packing	28		
13	Precautions	29		

1. General Description


DEP133C02 is a reflective electrophoretic E Ink \circledR technology display module based on active matrix TFT substrate. It has 13.3" active area with 1200 x 1600 pixels and 3:4 aspect ratios. The display is capable to display images at red/green/blue/yellow/black/ white depending on the display controller and the associated waveform file it used.

2. Features

- High contrast electrophoretic imaging film
- 1200 x 1600 display
- Ultra-wide viewing angle
- Ultra-low power consumption
- Pure reflective mode
- Bi-stable
- Landscape, portrait mode
- Commercial temperature range: 0°C~50°C

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	13.3	inch	150ppi
Display Resolution	1200(H) x 1600(V)	Pixel	3:4
Active Area	202.8 (H) x 270.4 (V)		
Pixel Pitch	0.169 x 0.169	mm	
Pixel Configuration	Square		
Outline Dimension	208.8 (H) x 284.7 (V) x 0.85(D)	mm	Without masking film
Module Weight	50 ± 10	g	
Display operating mode	Reflective mode		
FPL	E Ink Spectra 6		
Surface treatment	Anti-glare treatment for protective sheet		

5. Input / Output Interface5.1 Connector type

196070-60041 (60 pin , 0.5pitch)

5.2 Pin Assignment

Pin Assignment

	ssignme		
Pin #	Type	Single	Description
1	P	VCOMBD_M	VCOMBD driving voltage (Master)
2	I	RESEC	Current sense input pin for the control loop.(VCOM)
3	О	GDRC	N-Channel MOSFET gate drive control.(VCOM)
4	I	RESEN	Current sense input pin for the control loop. (VDDN)
5	О	GDRN	P-Channel MOSFET gate drive control pin. (VDDN)
6	I	RESEP	Current sense input pin for the control loop. (VDDP)
7	О	GDRP	N-Channel MOSFET gate drive control pin. (VDDP)
8	P	GND	Ground
9	P	AVDD	2.3~6V for analog voltage supply.(DC/DC)
10	P	VDD	2.3~3.6V for analog /digital voltage supply.
11		NC	No connection and do not connect with other NC pins
12	P	VCC	LDO output pin.
13	P	VDDP	Positive power supply for analog circuit.
14	P	VDDP	Positive power supply for analog circuit.
15		NC	No connection and do not connect with other NC pins
16	P	VDDN	Negative power supply for analog circuit.
17	P	VDDN	Negative power supply for analog circuit.
18	P	VCC1	Positive power supply only for Oscilltor.
19	P	VDDIO	Power input for IO.
20	I/O	TSCL	I2C Interface to digital temperature sensor Clock pin
21	I/O	TSDA	I2C Interface to digital temperature sensor Data pin
22	I	BS0	Input interface setting. Select 3 wire/ 4 wire/ Quad SPI interface.(Default :H)
23	I	BS1	Input interface setting. Select 3 wire/ 4 wire/ Quad SPI interface.(Default :H)
24	I	RES#	Reset.
25	0	BUSY_N	This pin indicates the driver status. Connect with a pull up resistor to VDDIO. BUSY_N = "0": Driver is busy, data/VCOM is transforming. BUSY_N = "1": Non-busy. Host side can send command/data to driver.
26	I	D/C#	Command/Data input. L: command H: data. (4-wire SPI). Connect to GND in 3-wire mode or standard 4-wire mode.

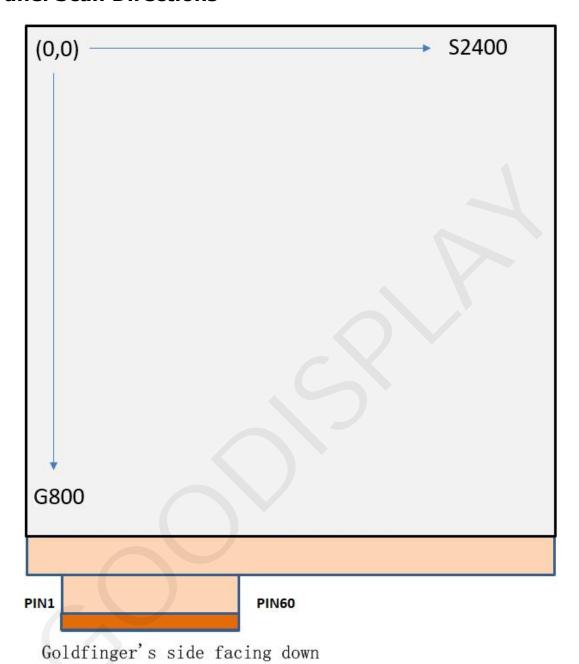
27	I	CSB_M	Serial communication chip select.(Master)
28	I	SCL	Serial communication clock input.
29	I/O	SIO	Serial communication data input/output (3-wire/4-wire SPI). Serial communication data input (Standard 4-wire SPI).
30	I/O	SI1	Serial communication data input. Serial communication data output. (Standard 4-wire SPI).
31	I	SI2	Serial communication data input. (Standard 4-wire SPI Quad mode)
32	I	SI3	Serial communication data input. (Standard 4-wire SPI Quad mode)
33	О	DRVP_Gate	Driving external N-MOSFET(VGP)
34	Ι	FBP	Positive charge pump(VGP) feedback pin.
35	P	GND	Ground
36	О	VCOMBD_S	VCOMBD driving voltage (Slave)
37	О	DRVN	Driving external BTJ. (VGN)
38	I	FBN	Negative charge pump feedback pin. (VGN)
39	О	REG_VGN	VGN internal reference voltage output.
40	О	DRVN2	Driving external BTJ. (VNCP_3P5V)
41	P	VNCP_3P5V	Negative power supply for analog bias1 circuit. (for TFT_Vcom)
42	P	VSPH	Positive source buffer output.
43	P	VSPL	Positive source buffer output.
44	P	VSPL2	Positive source buffer output.
45	P	VSPHI	Positive source voltage.
46	P	VSPLI	Positive source voltage.
47	P	VSPL2I	Positive source voltage.
48	P	VSNH	Negative source buffer output.
49	P	VSNL	Negative source buffer output.
50	P	VSNL2	Negative source buffer output.
51	P	VSNL2I	Negative source voltage.
52	P	VSNLI	Negative source voltage.
53	P	VSNHI	Negative source voltage.
54	О	FPL_VCOM	FPL_VCOM driving voltage
55	О	TFT_VCOM	TFT_VCOM driving voltage
56	P	VBB_3P5V	Negative power supply for analog bias2 circuit. (for TFT_Vcom)
57	-	NC	No connection and do not connect with other NC pins
58	I	CSB_S	Serial communication chip select.(Slave)
59	P	VGH	Positive Gate driving voltage
60	P	VGL	Negative Gate driving voltage

Note 5-1: This pin (CSB) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CSB is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active Low.

Note 5-4: This pin (BUSY_N) is Busy state output pin. When Busy is low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin low when the driver IC is working such as:


- Outputting display waveform; or
- Programming with OTP
- Communicating with digital temperature sensor

Note 5-5: This pin (BS0/BS1) is for 3-line SPI /4-line SPI/QSPI selection. Please refer to below Table.

Table: Bus interface selection

BS1	BS0	MPU Interface				
L	L	3-lines serial peripheral interface (SPI) – 9 bits SPI				
L	Н	4-lines serial peripheral interface (SPI)				
Н	L	Standard 4-wire SPI				
Н	Н	Standard 4-wire SPI (Default)				

5.3 Panel Scan Directions

6. Electrical Characteristics

6.1 Absolute Maximum Ratings:

Parameter	Symbol	Rating	Unit
Analog power	VDD	-0.5 to +3.6	V
Operating Temp. range	T_{OPR}	0 to +50	°C
Storage Temp. range	T_{STG}	-25 to +50	°C

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

6.2 Display Module DC characteristics

The following specifications apply for: VDD = 3.3V, $TA = 25^{\circ}C$

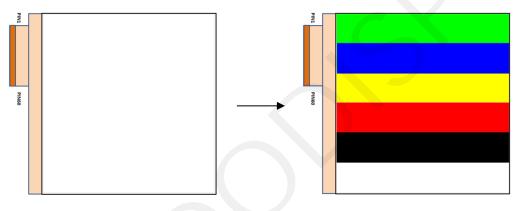
a , ,	D	Q	B #75.	/PX / F	3.5.4.77	F7. 4
Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDD	Logic supply voltage		2.4	3.3	3.6	V
VGH	Positive Gate driving voltage		26	27	28	V
VGL	Negative Gate driving voltage		-21	-20	-19	V
VSPH	Positive source driving voltage 1			Adjusted		V
VSPH2	Positive source driving voltage 2			Adjusted		V
VSNH	Negative source driving voltage 1			Adjusted		V
VSNH2	Negative source driving voltage 2			Adjusted		V
VCOM_DC	VCOM_DC output voltage		-4.0	Adjusted	-0.3	V
VIL	Low level input voltage	Digital input pins	GND		0.2xVDD	V
VIH	High level input voltage	Digital input pins	0.8xVDD		VDD	V
Vон	High level output voltage	Digital output pins, I _{OUT} = 1 mA,VDD = 2.4V	0.8xVDD			V
Vol	Low level output voltage	Digital output pins, I _{OUT} = 1 mA,VDD = 2.4V	GND		0.2xVDD	V
IMSTB	Module stand-by current	Stand-by mode		6.58		uA
IMDS	Module deep sleep current	Deep sleep mode		0.70		uA
I_{NC}	Inrush Current	Booster on		641.6	844.5	mA
T	D	TYP Loading Pattern		622.4	871.2	mA
I_{PC}	Driving Peak Current	High Loading Pattern		700.8	987.4	mA
Lyopp	Malifornia	TYP Loading Pattern		45.5	58.1	mA
IMOPR	Module operating current	High Loading Pattern		355.2	511.5	mA
Р	Operation Power	TYP Loading Pattern VDD=3.3V with DC-DC		150.2	191.8	mW
	Dissipation	High Loading Pattern VDD=3.3V with DC-DC		1172.2	1688.0	mW
PSTBY	Standby Power Dissipation	VDD=3.3V		0.876		uW

Note: The Module operating current data is measured by using Oscilloscope, and extract the Mean value.

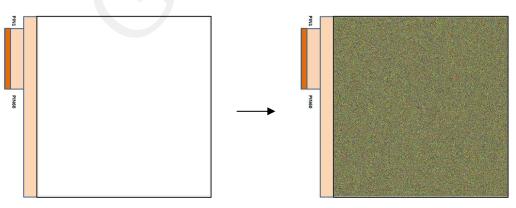
⁻The typical power consumption is measured using associated 25C waveform with following pattern transition:

from full white pattern to color stripe pattern. (Note 7-1)

The high loading power consumption is measured using associated 25C waveform with following pattern


Note: The Module operating current data is measured by using Oscilloscope, and extract the Mean value.

-The typical power consumption is measured using associated 25C waveform with following pattern transition:


from full white pattern to color stripe pattern. (Note 7-1)

- -The high loading power consumption is measured using associated 25C waveform with following pattern transition: from full white pattern to noise pattern (including random scattering of 4 colors) (Note 7-2)
- The minimum VDD value by 2.4V is based on typical application pattern with stable and continuing power supply. It does not apply on high loading pattern such as Note 7-2.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by E Ink
- Vcom value has been set in the IC chip on the panel.
- Issue the command 0x07 with data 0xA5 to let EPD enter deep sleep mode.

Note 6-1 The typical power consumption

Note 6-2 The high loading power consumption

6.3 Panel AC Characteristics

6.3.1 MCU Interface

6.3.1.1 MCU Interface Selection

In this module, there are 3-wire SPI, 4-wire SPI and standard 4-wire SPI that can communicate with MCU. The MCU interface mode can be set by hardware selection on BS0 and BS1 pins. Please refer to the following table to select the bus interface.

Pin Name	Bus Se	lection	Data/Command I	nterface	Control Signal		
Bus interface	BS0	BS1	SDA	SCL	CS#	D/C#	RES#
3-wire SPI	L	L	SDIN/OUT	SCLK	CS#	N/A	RES#
4-wire SPI	Н	L	SDIN/OUT	SCLK	CS#	L: Command Input H: Data Input	RES#
Standard 4-wire SPI	Н	Н	MOSI : SDOUT MISO : SDIN	SCLK	CS#	N/A	RES#

Table 6-1: MCU interface assignment under different bus interface mode

Note 6-3: L is connected to GND Note 6-4: H is connected to VDD

6.3.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCLK, serial data SDA, D/C#, CS#.

Function	CS#	D/C#	SCLK
Write Command	L	L	↑
Write data	L	Н	↑

Table 6-2: Control pins of 4-wire Serial Peripheral interface

Note 6-5: ↑stands for rising edge of signal

SDA is shifted into an 8-bit shift register in the order of D7, D6, ... D0. The data byte in the shift register is written to the Graphic Display Data RAM (RAM) or command register in the same clock. Under serial mode, only write operations are allowed.

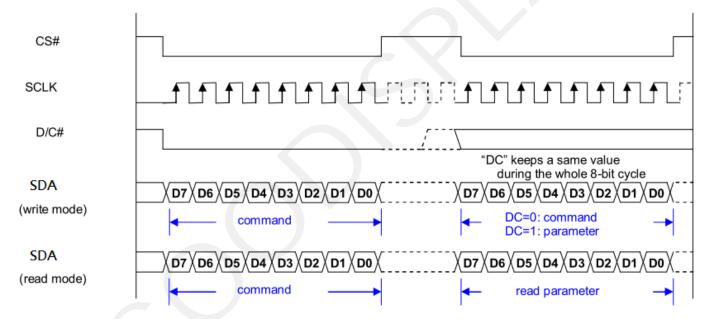


Figure 6-1: Write procedure in 4-wire Serial Peripheral Interface mode

6.3.1.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDA and CS#. In 3-wire SPI mode, the pin D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Function	CS#	D/C#	SCLK
Write Command	L	Tied to GND	↑
Write data	L	Tied to GND	1

Table 6-3: Control pins of 3-wire Serial Peripheral Interface

Note 6-6: ↑stands for rising edge of signal

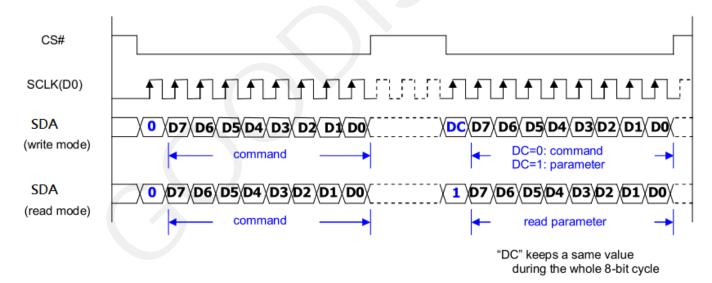


Figure 6-2: Write procedure in 3-wire Serial Peripheral Interface mode

6.3.2 Timing Characteristics of Series Interface

6.3.2.1 3-wire SPI

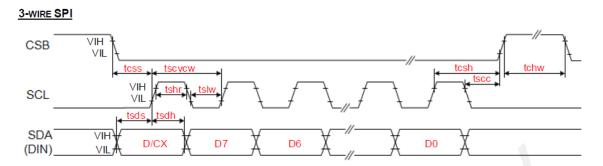


Figure: 3-wire Serial Interface - Write

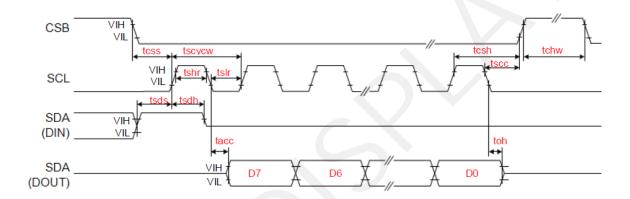


Figure: 3-wire Serial Interface - Read

6.3.2.2 4-wire SPI

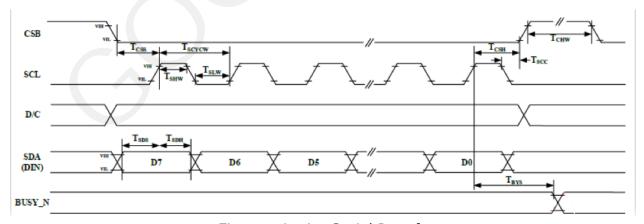
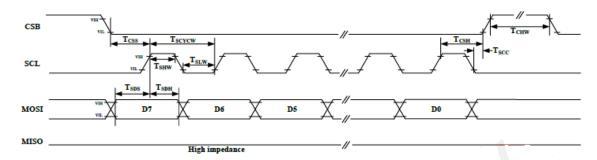



Figure: 4-wire Serial Interface

6.3.2.3 Starnard 4-wire SPI

Standard 4 pin serial interface characteristics

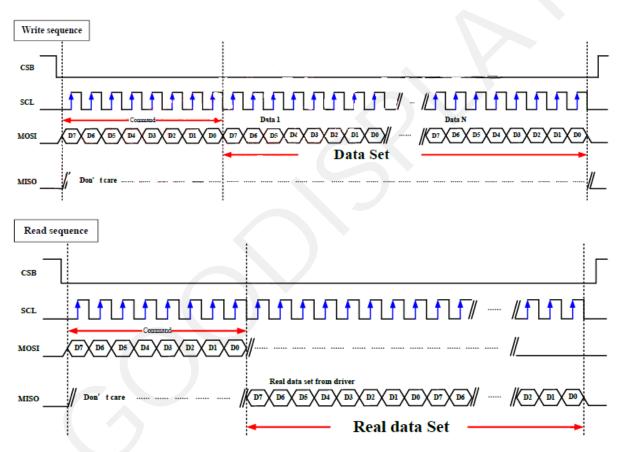


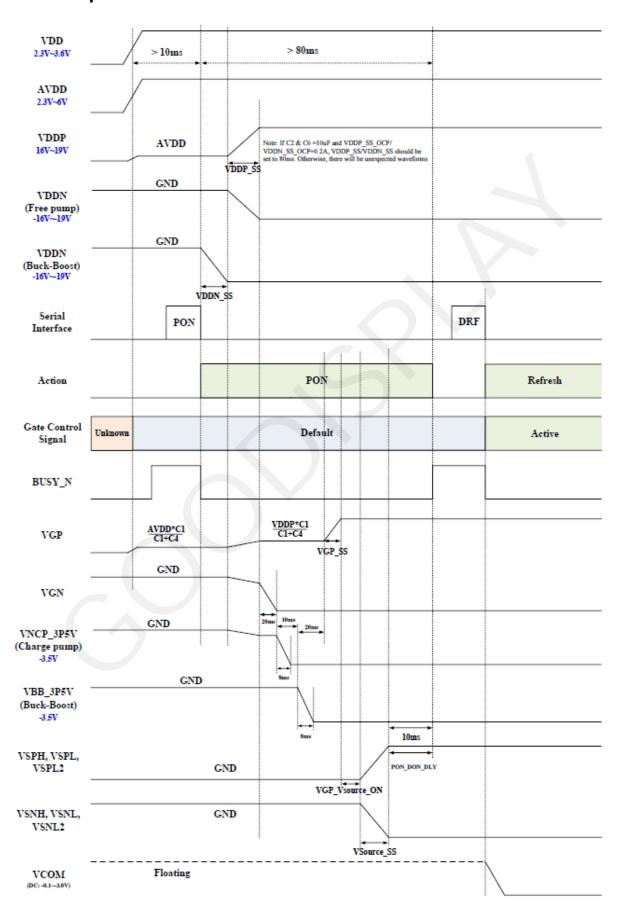
Figure: Standard 4 pin serial interface protocol

Table 3-wire Timing Table

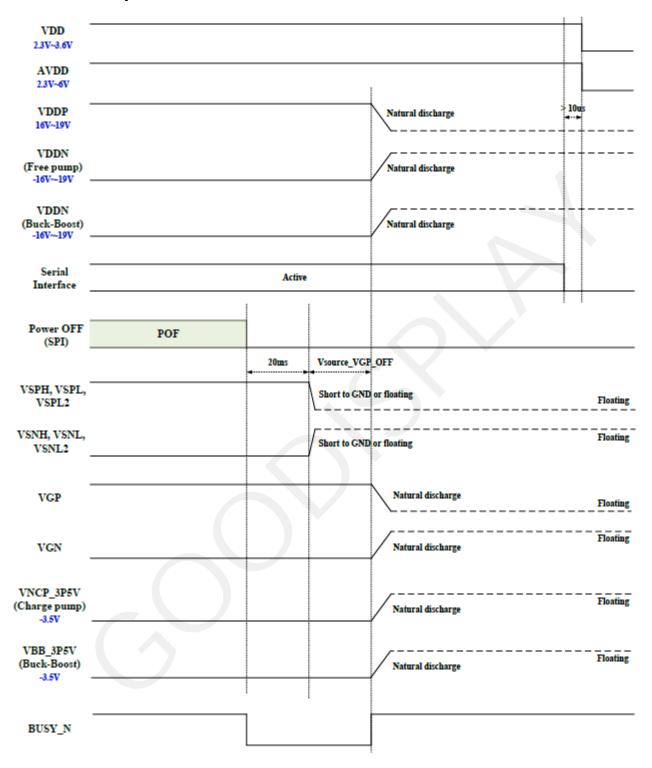
Parameter	Symbol	Min	Тур	Max	Unit	condition	
SERIAL COMN	MUNICATION	1		T	1		
	Tcss	60			ns	Chip select setup time	
CCD	Tcsh	65			ns	Chip select hold time	
CSB	Tscc	20			ns	Chip select setup time	
	Tchw	40			ns	Chip select setup time	
			Serial clock cycle (Write)				
	Tshw	25			ns	SCL "H" pulse width (Write)	
	Tslw	25			ns	SCL "L" pulse width (Write)	
COL	Tscysr	150			ns	Serial clock cycle (Read)	
SCL	Tshr	60			ns	SCL "H" pulse width (Read)	
	Tslr	60			ns	SCL "L" pulse width (Read)	
	Tscyc_cm	150			ns	Serial clock cycle (Between	
	D_PAR					command and 1st parameter)	
	Tsds	30			ns	Data setup time	
SDA	Tsdh	30			ns	Data hold time	
	TACC			140	ns	Access time	
BUSY_N	TBYS			150	ns	BUSY_N setup time	

Table 4-wire Timing Table

Parameter	Symbol	Min	Тур	Max	Unit	condition	
SERIAL COMN	SERIAL COMMUNICATION						
CCD	Tcss	60			ns	Chip select setup time	
	Tcsh	65			ns	Chip select hold time	
CSB	Tscc	20			ns	Chip select setup time	
	Tchw	40			ns	Chip select setup time	
	Tscycw	50			ns	Serial clock cycle (Write)	
	Tshw	25			ns	SCL "H" pulse width (Write)	
	Tslw	25			ns	SCL "L" pulse width (Write)	
CCI	Tscysr	150			ns	Serial clock cycle (Read)	
SCL	Tshr	60			ns	SCL "H" pulse width (Read)	
	Tslr	60			ns	SCL "L" pulse width (Read)	
	Tscyc_c	1.50				Serial clock cycle (Between command	
	MD_PAR	150			ns	and 1st parameter)	
	Tsds	30		ns Data setup time		Data setup time	
SDA	Tsdh	30			ns	Data hold time	
	TACC			140	ns	Access time	
BUSY_N	TBYS			150	ns	BUSY_N setup time	


Table standard 4-wire Timing Table

Parameter	Symbol	Min	Тур	Max	Unit	condition
SERIAL COM	MUNICATIO	N	ı	1	I	
	Tcss	60			ns	Chip select setup time
CCD	Tcsh	65			ns	Chip select hold time
CSB	Tscc	20			ns	Chip select setup time
	Tchw	40			ns	Chip select setup time
	Tscycw	50			ns	Serial clock cycle (Write)
	Tshw	25			ns	SCL "H" pulse width (Write)
	Tslw	25			ns	SCL "L" pulse width (Write)
CCI	Tscysr	150			ns	Serial clock cycle (Read)
SCL	Tshr	60			ns	SCL "H" pulse width (Read)
	Tslr	60			ns	SCL "L" pulse width (Read)
	Tscyc_c	150			Serial clock cycle (Between	
	MD_PAR	150			ns	command and 1st parameter)
MOGI	Tsds	30			ns	Data setup time
MOSI	Tsdh	30			ns	Data hold time
MISO	TACC			140	ns	Access time
BUSY_N	TBYS			150	ns	BUSY_N setup time


7. Power Characteristics

Power ON Sequence

Power OFF Sequence

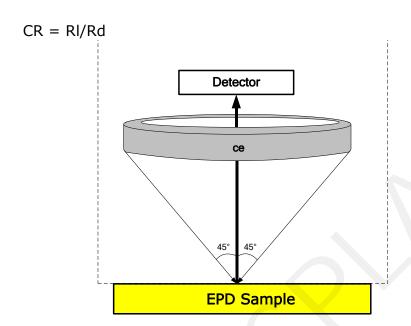
8. Optical Characteristics

8.1 Specifications

Symbol	Parameter	Conditio ns	Temperature	Min	Тур.	Max	Unit	Note
R	Reflectance	White	25°C	30	34	-	%	Note 8-1
CR	Contrast Ratio	-	25°C	15	22	-	-	-
T _{update}	Update time	-	25°C	-	12	-	sec	-

Symbol	Parameter	Conditio ns	Temperature	L* Typ.	a* Typ.	b* Typ.	△E2000 Max.	Note
WS	White State L*/a*/b* value	White	25°C	66.5	-4	0	6	Note 8-1
DS	Dark State L*/a*/b* value	Dark	25°C	12	7	-11	6	Note 8-1
RS	Red State L*/a*/b* value	Red	25°C	26.5	41	30	6	Note 8-1
YS	Yellow State L*/a*/b* value	Yellow	25°C	62	-11	65	6	Note 8-1
BS	Blue State L*/a*/b* value	Blue	25°C	34	3.5	-37	6	Note 8-1
GS	Green State L*/a*/b* value	Green	25°C	35	-22	15	8	Note 8-1

WS: White state, DS: Dark state, RS: Red state, YS: Yellow state, BS: Blue state,


GS: Green state Note 8-1: Luminance meter: Eye - One Pro3 plus

Spectrophotometer

8.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (RI) and the reflectance in a dark area (Rd) :

8.3 Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance\ Factorwhite\ board\ x\ (Lcenter\ / Lwhite\ board\)$ Lcenter is the luminance measured at center in a white area (R=G=B=1). Lwhite board is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

Product specification | The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Droduct	Environmenta	l certification
PIUUULL	LIIVII UIIIIIEIILA	ı ceruncanon

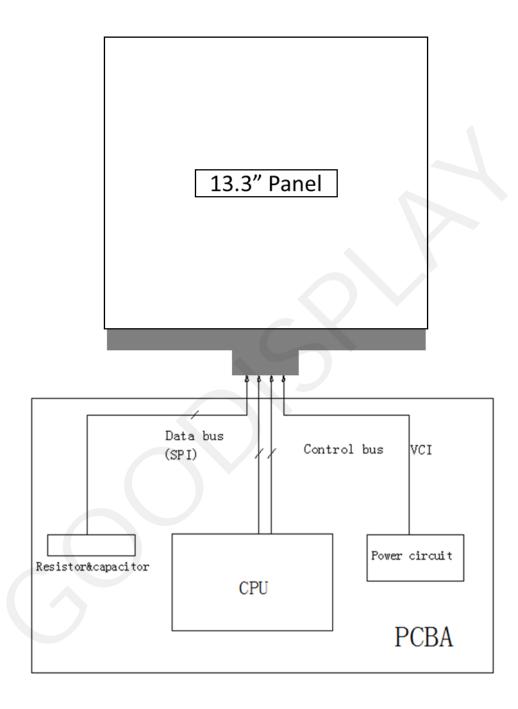
RoHS

10. Reliability Test

	TEST	CONDITION	REMARK
1	High Temperature Storage	T = 60°C 35% RH, 240Hrs	(Test in White pattern)
2	Low Temperature Storage	$T = -25^{\circ}C$, 240Hrs	(Test in White pattern)
3	High Temperature Operation	T = 50°°C 30% RH, 240Hrs	
4	Low Temperature Operation	$T = 0^{\circ}C$, 240Hrs	
5	High-Temperature, High- Humidity Operation	$T = +40^{\circ}C$, RH = 90%, 240Hrs	
6	High Temperature, High- Humidity Storage	T = 60°C 80% RH, 240Hrs	(Test in White Pattern)
7	Heat Shock	-25°C (30 min) ~60°C (30 min) 50 cycle, 1Hr/cycle	(Test in White pattern)
8	Electrostatic Discharge	(Machine model) +/- 200V ; 0Ω , 200pF	Non-operation

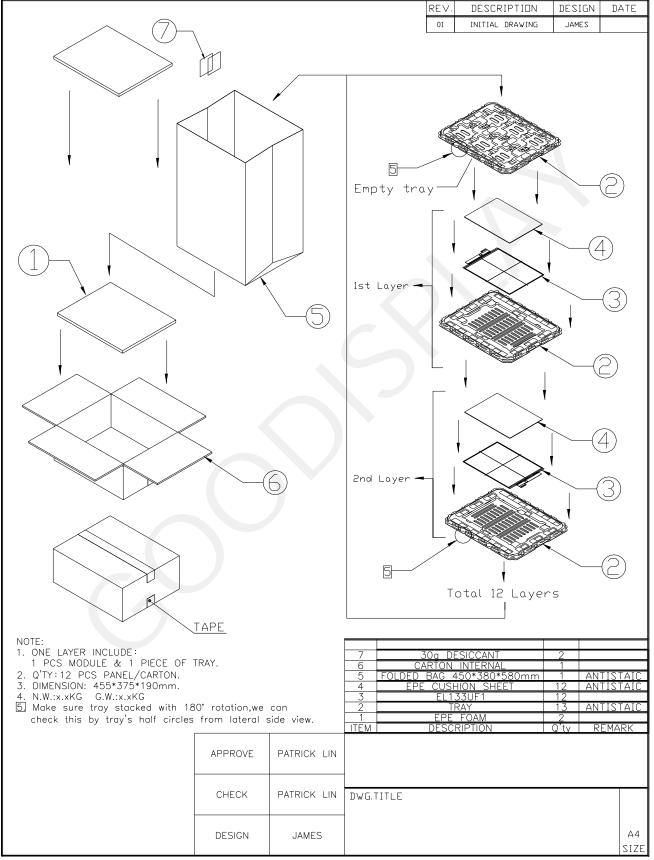
Actual EMC level to be measured on customer application.

Note: The protective film must be removed before temperature test.


< Criteria >

In the standard conditions, there is not display function NG issue occurred.

All the cosmetic specification is judged before the reliability stress.


11. Block Diagram

12. Packing

Packing Drawing

FILE VERSION : 2022/11/14

13. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.