

E-paper Display Series

GDEY0154D67

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard							
Description	1.54" E-PAPER DISPLAY							
Model Name	GDEY0154D67							
Date	2020/11/23							
Revision	1.0							

Design Engineering						
Approval	Check	Design				
宝刘即亚	之温即馨	之刘即昭				

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	NOV.23.2020	New Creation	ALL	

CONTENTS

1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Command Table	
7.	Electrical Characteristics	22
	7.1 Absolute maximum rating	22
	7.2 Panel DC Characteristics	22
	7.3 Panel AC Characteristics	23
	7.3.1.1 MCU Interface selection	23
	7.3.1.2 MCU Serial Interface (4-wire SPI)	23
	7.3.1.3 MCU Serial Interface (3-wire SPI)	25
	7.3.2 Serial Peripheral Interface	26
8.	Operation Flow and Code Sequenc	28
	8.1 General operation flow to drive display panel	28
9.	Optical Specifications	29
	9.1. Specifications	29
10.	Handling, Safety and Environment Requirements	29

11.	Reliability test	30
12.	Block Diagram	32
13.	Reference Circuit	33
	Matched Development Kit	
	Point and line standard	
	Packaging	
17.	Precautions	37

1. Over View

GDEY0154D67 is a TFT active matrix electrophoretic display, with interface and a reference system design. The 1.54" active area contains 200×200 pixels, and has 1-bit black/white full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features

- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I2C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 300um

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:184
Active Area	27.0(H)×27.0(V)	mm	
Pixel Pitch	0.14×0.14	mm	
Pixel Configuration	Square		
Outline Dimension	31.80(H)×37.32(V) ×1.0(D)	mm	
Weight	2.18±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	1
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	C	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin

is pulled High, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin

Low when the driver IC is working such as:

Outputting display waveform; or

Communicating with digital temperature sensor

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Command Table

Com	man	d Tal	ole													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ng			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				200 MUX		
0	1				_		-			_		MUX Gate	e lines set	tting as (A	[8:0] + 1).	
0 0	1		0 0	0 0	0 0	0 0	0 0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects the GD=0 [PC G0 is the output see GD=1, G1 is the output see B[1]: SM Change s SM=0 [PC G0, G1, G interlaced SM=1, G0, G2, G	on [POR] nning sequence is 1st gate of the control	uence and	nnel, gate 2, G3, nnel, gate 63, G2, te driver.	e e
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	TB = 1, so	driving vo	i from G0 G199 to G		
0	1		0	0	0	A ₄	A 3	A ₂	A ₁	A ₀	Control	A[4:0] = 0		0V to 20V	,	
												A[4:0]	VGH	A[4:0]	VGH	1
												00h	20	0Dh	15	
												03h	10	0Eh	15.5	
												04h	10.5	0Fh	16	
												05h	11	10h	16.5	
												06h	11.5	11h	17	
												07h	12	12h	17.5	
												08h	12.5	13h	18	
												07h	12.0	14h	18.5	
												08h	12.5	15h	19	
												09h	13	16h	19.5	
												03h	13.5	17h	20	1
												0Bh	14	Other	NA	
												0Ch	14.5	Outer	INA	
												UCII	14.5			

Com	man	d Tal	ble															
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description				
0	0	04	0	0	0	0	0	1	0	0		e Driving	voltage	Set Source driving voltage				
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Contro		remage	A[7:0] = 41h [POR], VSH1 at 15V				
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	1			B[7:0] = A8h [POR], VSH2 at 5V.				
0	1		C ₇	C ₆	C ₅	C ₄	C ₃		_	-	-			C[7:0] = 32h [POR], VSL at -15V				
	']/B[7]	- 1	U/	C 6	O 5	U 4	U 3		$C_2 \mid C_1 \mid C_0 \mid$ Remark: VSH1>=VSH2 A[7]/B[7] = 0, $C[7] = 0$,									
VSH	11/VS	- 1, SH2 \	oltag	je se	tting	from	2.4V	VS	SH1/\			e setting	from 9V	VSL setting from -5V to -17V				
to 8		Lyou	40.401.10	T	17.01	Lyou	0.401.10	_	17V	110	114 0 401 10	A (D17-0)	Lyounger					
_	B[7:0] 8Eh	_	1/VSH2 2.4	_	[7:0] .Fh	_	/VSH2	<u> </u>	A/B[7:0] 23h	VS	9 9	A/B[7:0] 3Ch	VSH1/VSH	C[7:0] VSL OAh -5				
	8Fh		2.5	В	0h	5	.8		24h		9.2	3Dh	14.2	0Ch -5.5				
-	90h 91h	_	2.6	_	1h 2h		6	<u> </u>	25h 26h		9.4	3Eh 3Fh	14.4 14.6	0Eh -6				
	92h	_	2.8	_	3h	_	.1		27h	+	9.8	40h	14.8	10h -6.5				
_	93h		2.9	_	4h	_	.2		28h		10	41h	15	12h -7				
	94h	1	3	_	5h	_	.3	<u> </u>	29h	_	10.2	42h	15.2	14h -7.5 16h -8				
_	95h 96h	_	3.1	_	6h 7h	_	.5		2Ah 2Bh	+	10.4	43h 44h	15.4 15.6	18h -8.5				
	97h		3.3	В	8h	6	.6		2Ch		10.8	45h	15.8	1Ah -9				
_	98h 99h		3.4 3.5	_	9h Ah	_	.7		2Dh 2Eh	\perp	11 11.2	46h	16	1Ch -9.5				
_	99n 9Ah	_	3.6	_	An Bh		.9	-	2En		11.4	47h 48h	16.2 16.4	1Eh -10				
_	9Bh		3.7	В	Ch		7		30h		11.6	49h	16.6	20h -10.5 22h -11				
	9Ch 9Dh	_	3.8	-	Dh Eh		.1	<u> </u>	31h		11.8	4Ah	16.8	24h -11.5				
_	9Eh	+-	4	_	Fh	_	.3		32h 33h	+	12 12.2	4Bh Other	17 NA	26h -12				
	9Fh	_	4.1	-	0h	_	.4		34h		12.4			28h -12.5				
	A0h	_	4.2	_	1h	_	.5	<u> </u>	35h	_	12.6			2Ah -13				
_	A1h A2h	_	4.3 4.4	_	2h 3h	_	.6 .7	-	36h 37h		12.8			2Ch -13.5				
	A3h		4.5	С	4h	7	.8		38h		13.2			2Eh -14 30h -14.5				
_	A4h	_	4.6 4.7	_	5h 6h	_	.9 8	<u> </u>	39h 3Ah	_	13.4			32h -15				
_	A5h A6h	_	4.8	_	7h		.1		3Bh		13.8			34h -15.5				
	A7h	1	4.9	_	8h	_	.2	_						36h -16				
_	A8h A9h		5 5.1	-	9h Ah	_	.3							38h -16.5				
_	AAh	_	5.2	_	Bh	_	.5							3Ah -17 Other NA				
_	ABh	1	5.3	С	Ch	8	.6							Other NA				
	ACh	_	5.4	_	Dh	_	.7											
_	ADh AEh	_	5.5 5.6	_	Eh ther	_	.8 IA											
		00		•	0						1-20-3	0-4-0 :		D				
0	0	80	0	0	0	0	1	0	0	0		Code Set Program	ting	Program Initial Code Setting				
												-		The command required CLKEN=1.				
														Refer to Register 0x22 for detail.				
														BUSY pad will output high during				
														operation.				
0	0	09	0	0	0	0	1	0	0	1	Write	Register t	for Initial	Write Register for Initial Code Setting				
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		Setting		Selection				
0	1		100		(Casc)		0.00		8,550	Bo				A[7:0] ~ D[7:0]: Reserved				
_			B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	-				Details refer to Application Notes of Initial				
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co				Code Setting				
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀								
0	0	0A	0	0	0	0	1	0	1	0		Register : Setting	for Initial	Read Register for Initial Code Setting				

Com	man	d Tal	ole	A)			11121				110	
	D/C#		D7	D6	D5	D4	D3	D2	D1	I D	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase
0	1		1	A ₆	A ₅	A4	A ₃	A ₂	A	ı A	Control	for soft start current and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	В		A[7:0] -> Soft start setting for Phase1
0	1		1	C ₆	C ₅	C ₄	С3	C ₂	_	_	_	= 8Bh [POR] B[7:0] -> Soft start setting for Phase2
0	1		0	0	D ₅	D ₄	Dз	D ₂	-	_	-	= 9Ch [POR]
			ľ						-	. _		C[7:0] -> Soft start setting for Phase3 = 96h [POR]
												D[7:0] -> Duration setting = 0Fh [POR]
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength
												Selection 000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Min Off Time Setting of GDR
												[Time unit]
												0000 ~ NA
												0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3 1010 7.3
												1010 7.3
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2
												D[1:0]: duration setting of phase 1
												Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1	.0	0	0	0	0	0		A ₁	A ₀	200p Gloop Mode	A[1:0]: Description
•			-					Ĭ	**1	, 10		00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will
												enter Deep Sleep Mode, BUSY pad will
												keep output high.
												Remark:
												To Exit Deep Sleep mode, User required to send HWRESET to the driver
												to conditivity Louis to the univer

Com	man	d Ta	ble									
R/W#				D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	A ₀		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	Aı	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	10	0	0	0	4	4	0	4	4	Town over tree Or	Dood from town such as a sister
0	1	1B	0	0	0	1	1	0	1	1 A ₄	Temperature Sensor Control (Read from	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	temperature register)	
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

	man			-	-		F.	F.				D
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel
												images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update A[7:0] = 00h [POR]
0	1		A ₇	A_6	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		B[7:0] = 00h [POR]
												ALT: 41 Dad DAM antion
												A[7:4] Red RAM option 0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	Αo		A[2:0] = 011 [POR]
												A [1:0] = ID[1:0]
												Address automatic increment / decrement setting
												The setting of incrementing or
												decrementing of the address counter can
												be made independently in each upper and
												lower bit of the address. 00 –Y decrement, X decrement,
												01 –Y decrement, X decrement,
												10 -Y increment, X decrement,
												11 –Y increment, X increment [POR]
												A[2] = AM
												Set the direction in which the address
												counter is updated automatically after data
												are written to the RAM.
												AM= 0, the address counter is updated in
												the X direction. [POR] AM = 1, the address counter is updated in
												the Y direction.

Com	man	d Ta	ble		,					500			
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opt	ion:
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1	91
												→ Disable clock signal	
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
										-	I =		
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly	another
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

Com	man	d Ta	ble									
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]:
												Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1 st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0 1	29	0	0 1	0	0	1 A ₃	0 A ₂	0 A ₁	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
J		2.4	J	0		0		J	1	U	Trogram VOON OTF	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
_		0.5	•			_					W. 1 D . 1 C 1/25.	
0	0	2B	0	0	1	0	1	0	1	0	Write Register for VCOM Control	This command is used to reduce glitch when ACVCOM toggle. Two data bytes
0	1		0	0	1	0	0	0	1	1		D04h and D63h should be set for this command.

Com	man	d Ta	ble												
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	-	9575 3350378	er from M	ICU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	-	A[7:0] =	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
=						e 3				, ,					
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Display Option				
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			VCOM OT		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		(Comm	and 0x37,	Byte A)	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0]: '	VCOM Re	gister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(Comm	and 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		C[7:0]-	C(7:0), Dia	nlov Mod	lo.
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			G[7:0]: Dis and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀		[5 bytes		2,10 2 10	, Dyto . ,
1	1		l ₇	I ₆	I ₅	I ₄	I ₃	l ₂	I ₁	I ₀					
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀			K[7:0]: Wa and 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K₀		[4 bytes		byte G to	D byte 3)
- 1	'		IX/	170	IXo	114	173	132	IXI	IX0		[· b) to	71		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte User	r ID store	ed in OTP
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]]~	J[7:0]: Use		Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀					
	300		Sava.	500			-	1000000		1000000		1			
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀		5			
1	1		17	6	15	4	l ₃	2	l ₁	l ₀					
1	1		J_7	J_6	J ₅	J ₄	J ₃	J_2	J_1	Jo					

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	Ao	Status Bit Nead	A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by
												command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1.
												Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
•	J					•	J	•				The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
_				B ₆	-	. B4		B ₂	B ₁	_		and FR[n]
0	1		:	:	:	-	:	:	:	:		Refer to Session 6.7 WAVEFORM SETTING
0	1		•					•	•			SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
									-			For details, please refer to SSD1681 application note.
												BUSY pad will output high during operation.
0	0	25	0	0	4	4	_	4	0	4	CDC Status Dood	CDC Status Bood
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A ₁₅	A ₁₄	_			A ₁₀	A ₉	A ₈		- 1. stal is and state out tailed
1	1		A 7	A 6	A 5	A ₄	Аз	A ₂	A ₁	A 0		

Com	ıman	d Ta	ble									
	D/C#			D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀	_	D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀	_	E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G₃ H₃	G ₂	G₁ H₁	G₀ H₀	_	F[3:0 Display Mode for WS[35:32] 0: Display Mode 1
0	1		I ₇	I ₆	I ₅	I ₄	I ₃	I ₂	I ₁	Io	-	1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀	-	F[6]: PingPong for Display Mode 2
	ľ											0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1
_	0	38	0	_	- A	4	4	_	_	_	Maita Davieta for Hear ID	Write Devictor for Heart D
0	1	30	A ₇	0 A ₆	1 A ₅	1 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Write Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	_	
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	-	Remarks: A[7:0]~J[7:0] can be stored in OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-	
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀		
0	1		l ₇	l ₆	I ₅	l ₄	l ₃	l ₂	I ₁	I ₀		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences
						y						

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	ion
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	-	rder waveform for VBD
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Border Waverenn Genaer	A[7:0] = 0	C0h [POR], set VBD as HIZ. Select VBD option
												A[7:6]	
												00	GS Transition,
													Defined in A[2] and
												01	A[1:0] Fix Level,
												01	
												10	Defined in A[5:4] VCOM
												11[POF	
												LITEOR	N
												Δ [5·/1] Fi	x Level Setting for VBD
												A[5:4]	
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												L 11	VSHZ
												A[2] GS 1	Fransition control
												A[2]	GS Transition control
												0	Follow LUT
													(Output VCOM @ RED)
												1	Follow LUT
													1 011011 201
												A [1:0] G	S Transition setting for VBD
												A[1:0]	
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option fo	r LUT end
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] = 0	
0			~/	Λ6	Λο	~ 4	Λ3	A 2	Λ1	70			ormal.
											_	07h S	ource output level keep
												p	revious output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RA	M Option
0	1	18000	0	0	0	0	0	0	0	Ao		A[0]= 0 [F	
"	'		U			"				Αυ			RAM corresponding to RAM0x24
												1 : Read	RAM corresponding to RAM0x26
-													
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		ne start/end positions of the
0	1		0	0	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Start / End position		ddress in the X direction by an
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address u	unit for RAM
U			U		D5	D4	D 3	D2	וט	00			
													SA[5:0], XStart, POR = 00h
						9						B[5:0]: XI	EA[5:0], XEnd, POR = 15h
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	ne start/end positions of the
_	-	-10				100	-		100		Start / End position		ddress in the Y direction by an
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	- In poolion		unit for RAM
0	1		0	0	0	0	0	0	0	A ₈			
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	_		SA[8:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈		R[g:n]: AF	EA[8:0], YEnd, POR = 127h
											-		

W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	-		M for Rec	ular Patter
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0		9	
			, ,,		. ~	' '			' ''	' "					
												A[7]: The			
												A[6:4]: Ste			
													ter RAM ir	n Y-directi	on accordi
												to Gate	Haiaht	V(C-1)	Lloight
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Ste) on accordi
												to Source		i X dii ooti	on accord
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	200
												010	32	110	200
												010	64	111	200
												011	04	111	200
												BUSY page		ut high du	ring
_															
)	0	47	0	4	0	_	0	1	4	1	Auto Misto BAM DAM for	Auto Mit	DAM DAI	A for Dog	ular Patter
	1	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	A ₂	1 A ₁	Ao	Auto Write BW RAM for Regular Pattern	A[7:0] = 0		vi for Reg	ular Patter
												A[7]: The	1st step v	alue POF	2 = 0
												A[6:4]: Ste			
															on accordi
												to Gate			
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												-			
												011	64	111	200
												to Source	ter RAM ir	n X-directi	on accordi
												A[2:0]	Width	A[2:0]	Width
										1		000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												During op high.	eration, B	USY pad	will output
							1	1	1	0	Set RAM X address		al settings		
	0	4E	0	1	0	0					counter	address i	n the addr	ess count	er (AC)
-	0	4E	0	1 0	0 A ₅	0 A4	Аз	A ₂	A ₁	Ao					()
-		4E				_	-	A ₂	A ₁	Ao		A[5:0]: 00	h [POR].		
-		4E				_	-	A ₂	A ₁	A ₀	-	A[5:0]: 00	h [POR].		
	1		0	0	A 5	A4	A3				Sat DAM V addraga		h [POR].		
	1	4E 4F	0	0	A ₅	A ₄	A ₃	1	1	1	Set RAM Y address	Make initi	h [POR].	s for the R	AM Y
	1		0	0	A 5	A4	A3				Set RAM Y address counter	Make initi	h [POR]. ial settings n the addr	s for the R	AM Y
	1		0	0	A ₅	A ₄	A ₃	1	1	1		Make initi	h [POR].	s for the R	AM Y
	0 1 1	4F	0 0 A ₇ 0	1 A ₆ 0	As 0 As 0	0 A ₄ 0	A ₃ 1 A ₃ 0	1 A ₂ 0	1 A ₁ 0	1 A ₀ A ₈	counter	Make initi address ii A[8:0]: 00	ial settings in the addr 0h [POR]	s for the R ess count	AM Y er (AC)
	0 1		0 0 A ₇	0 1 A ₆	A ₅	0 A ₄	1 A3	1 A ₂	1 A ₁	1 A ₀		Make initi address in A[8:0]: 00 This commodule. However	ial settings in the addr ioh [POR]	s for the R ress count . n empty c reffect on t	AM Y er (AC) ommand; he display

7. Electrical Characteristics

7-1. Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

7-2. Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	Vss	_		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8 V _{CI}	-	-	v
Low level input voltage	V _{IL}	_	-	-	-	0.2 Va	V
High level output voltage	V _{OH}	IOH = - 100uA	-	0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	-	0.1 Va	V
Typical power	P _{TYP}	Va=3.0 V	-	-	4.5	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0 V	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	Va=3.0 V	-	-	1.5	-	mA
Full update time	-	25 °C	-	-	2	-	sec
Fast update time	-	25 °C	-	-	1.5	-	sec
Partial update time	-	25 °C	-	-	0.26	-	sec
Sleep mode current	Islp_Va	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Va	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

Note: During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern. (Note 7-1) The standby power is the consumed power when the panel controller is in standby mode. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by GOOD DISPLAY Vcom is recommended to be set in the range of assigned value \pm 0.1V.

Note 7-1 The Typical power consumption

7-3. Panel AC Characteristics

7-3-1. MCU Interface

7-3-1-1. MCU Interface selection

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

			Pin Na	ıme		
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Table 7-1: Interface pins assignment under different MCU interface

Note:(1) L is connected to VSS and H is connected to VDDIO

7-3-1-2. MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Table 7-2: Control pins status of 4-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 7-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 7-2: Read procedure in 4-wire SPI mode

7-3-1-3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function SCL pin		SDA pin	D/C# pin	CS# pin	
Write command	↑	Command bit	Tie LOW	L	
Write data	1	Data bit	Tie LOW	L	

Table 7-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

Figure 7-4: Read procedure in 3-wire SPI mode

7-3-2. Serial Peripheral Interface

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)	-	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	100	-	-	ns
t _{sclHigh}	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	-	ns
t _{sisu}	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	250	-	-	ns
tsclHigh	Part of the clock period where SCL has to remain high	180	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	-	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics

Figure 7-5: SPI timing diagram

8. Operation Flow and Code Sequence

8-1. General operation flow to drive display panel

9. Optical Specifications

9.1. Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	9-1
CR	Contrast Ratio	Indoor	8:1		-		9-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			9-3
T update	Image update time	at 25 °C		3	- 4	sec	
Life		Topr		1000000times or 5years			

Notes:

- 9-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 9-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 9-3. WS: White state, DS: Dark state

10. Handling, Safety and Environment Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Where application information is given, it is advisory and dose not form part of the specification.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sheet status					
Product specification The data sheet contains final product specifications.						
	Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).						
Stress above one or more of the limiting values may cause permanent damage to the device.						
These are stress ratings only and	These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics					
sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.						
	Application information					

Product Environmental certification
RoHS

11.Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temp erature Operation	T=50°C,RH=35% for 240 hrs	When the experimental cycle finished, the EPD samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Bp.	When experiment finished, the EPD must meet electrical performance standards.
2	Low-Tempe rature Operation	T = 0°C for 240 hrs	When the experimental cycle finished, the EPD samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As EPDs return room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Ab.	When experiment finished, the EPD must meet electrical performance standards.
3	High-Temp erature Storage	T = +70°C, RH=35% for 240 hrs Test in white pattern	When the experimental cycle finished, the EPD samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Bp.	When experiment finished, the EPD must meet electrical performance standards.
4	Low-Tempe rature Storage	T = -25°C for 240 hrs Test in white pattern	When the experimental cycle finished, the EPD samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Ab	When experiment finished, the EPD must meet electrical performance standards.
5	High Temperatur e, High- Humidity Operation	T=+40°C, RH=80% for 240 hrs	When the experimental cycle finished, the EPD samples will be taken out from the environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-3CA.	When experiment finished, the EPD must meet electrical performance standards.
6	High Temperatur e, High- Humidity Storage	T=+50°C, RH=80% for 240 hrs Test in white pattern	When the experimental cycle finished, the EPD samples will be taken out from the environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-3CA.	When experiment finished, the EPD must meet electrical performance standards.

_				1
7	Temperatur e Cycle	[-25°C 30mins] →[Temperature rise 30mins] [+70°C, RH=35% 30mins] →[Temperature drop 30mins], 1 cycle=2hrs, 50 cycles Test in white pattern	 Samples are put in the Temp & Humid. Environmental Chamber. Temperature cycle starts with -25°C, storage period 30 minutes. After 30 minutes, it needs 30min to let temperature rise to 60°C. After 30min, temperature will be adjusted to 60°C, RH=35% and storage period is 30 minutes. After 30 minutes, it needs 30min to let temperature rise to -25°C. One temperature cycle (2hrs) is complete. Temperature cycle repeats 50 times. When 50 cycles finished, the samples will be taken out from experiment chamber and set aside a few minutes. As EPDs return to room temperature, tests will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-14NB. 	When experiment finished, the EPD must meet electrical performance standards.
8	UV exposure Resistance	765 W/m ² for 168 hrs,40°C	Standard# IEC 60 068-2-5 Sa	
9	Electrostatic discharge	Machine Model: +/-250V, 0Ω, 200PF	Standard# IEC61000-4-2	
10	Package Vibration	1.04G,Frequency: 10~500Hz Direction: X, Y, Z Duration: 1hours in each direction	Full packed for shipment	
11	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment	

Actual EMC level to be measured on customer application.

Note: (1) The protective film must be removed before temperature test.

- (2) There's temperature vs display quality limitation in our display module, we guarantee 1 pixel display quality from 5° C ~ 30° C, and 2 pixel display quality for 0° C ~ 5° C & 30° C ~ 40° C.
- (3) In order to make sure the display module can provide the best display quality, the update should be made after putting the display module in stable temperature environment for 4 hours at 25℃.

12. Block Diagram

13. Reference Circuit

14. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link: https://www.good-display.com/product/53/

15. Point and line standard

Shipment Inseption Standard

Part-A: Active area Part-B: Border area

Equipment: Electrical test fixture, Point gauge

Outline dimension:

 $31.8(H) \times 37.32(V) \times 0.98(D)$

$31.8(H) \times 37.32(V) \times 0.98(I)$	Unit: mm						
	Temperature	Humidity	Illuminan	ce Distance	Time	Angle	
Environment	22 280	55±	1200~		35 Sec		
	23±2℃	5%RH	1500Lu	300 mm			
Name	Causes		Spot	size	Part-A	Part-B	
	B/W spot in glass or		D ≤ 0	.15mm	Ignore		
Spot	protection sheet,	(0.15mm <	D ≤ 0.25mm	2	Ignore	
	foreign mat. Pin hole		0.25mm	< D	0		
	Scratch on glass or	Length		Width	Part-A		
Scratch or line defect	Scratch on FPL or	L ≤1.0mm		W≤0.1 mm	Ignore	T	
Scratch of line defect	Particle is Protection	1.0 mm < L≤ 2.5mm		0.1 mm <w≤ 0.2mm<="" td=""><td colspan="2">2 Ignore</td></w≤>	2 Ignore		
	sheet.	2.5 mn	n < L	0.2mm < W	0		
		D1, D2 ≤ 0.15 mm			Ignore		
Air bubble	Air bubble	$0.15 \text{ mm} < D1, D2 \leq 0.2 \text{mm}$		2	Ignore		
			0.2mm <	0			
Side Fragment			x v sy				
	X≤3mm, Y≤0.5mm & display is ok, Ignore						

I Init

Remarks: Spot define: That only can be seen under WS or DS defects.

Any defect which is visible under gray pattern or transition process but invisible under black and white is disregarded.

Here is definition of the "Spot" and "Scratch or line defect".

Spot: W > 1/4L Scratch or line defect: W $\leq 1/4L$

Definition for L/W and D (major axis)

FPC bonding area pad doesn't allowed visual inspection.

Note: AQL = 0.4

16. Packing

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html