

E-paper Display Series

GDEY027T91

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard				
Description	2.7" E-PAPER DISPLAY				
Model Name	GDEY027T91				
Date	2022/04/30				
Revision	1.0				

Design Engineering				
Approval Check Design				
宝刘印玉	之温印馨	之对		

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	Apr.30.2022	New Creation	ALL	

CONTENTS

1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	10 11
	6.3.1 MCU Interface Selection	
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.3.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	27
9.	Handling, Safety, and Environment Requirements	28
10.	Reliability Test	29

11.	Block Diagram	30
12.	Reference Circuit	31
13.	Matched Development Kit	32
14.	Typical Operating Sequence	33
	14.1 Normal Operation Flow	33
15.	Inspection condition	
	15.1 Environment	34
	15.2 Illuminance	34
	15.3 Inspect method	
	15.4 Display area	34
	15.5 Inspection standard	3 5
	15.5.1 Electric inspection standard	3 5
	15.5.2 Appearance inspection standard	36
16	. Packaging	.38
17	Precautions	.39

1. Over View

GDEY027T91 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display image at 1-bit white, black full display capabilities. The 2.7inch active area contains 264×176pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

264×176 pixels display High cntrast High reflectance Ultra wide viewing angle Ultra low power consumption Pure reflective mode Bi-stable display

Commercial temperature range

Landscape portrait modes

Hard-coat antiglare display surface

Ultra Low current deep sleep mode

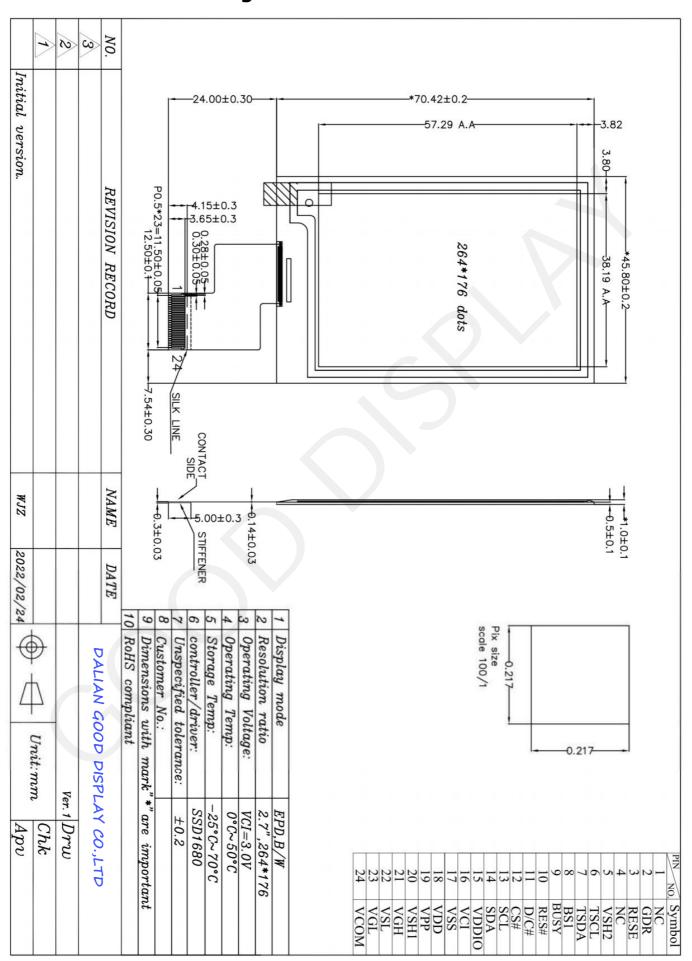
On chip display RAM

Waveform can stored in On-chip OTP or written by MCU

Serial peripheral interface available

On-chip oscillator

On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage


I2C signal master interface to read external temperature sensor Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.7	Inch	
Display Resolution	264(H)×176(V)	Pixel	Dpi:117
Active Area	38.19×57.29	mm	
Pixel Pitch	0.217×0.217	mm	
Pixel Configuration	Rectangle		
Outline Dimension	45.8 (H)×70.42(V) ×1.0(D)	mm	
Weight	5.5±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	C	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

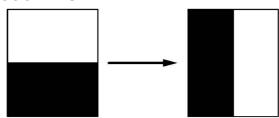
6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V _{SS}			-	0	-	V
Logic supply voltage	$V_{\rm CI}$		VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V_{IH}	-		0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}	-		-	-	0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA		0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA			-	0.1 V _{CI}	V
Typical power	P_{TYP}	V _{CI} =3.0V			TBD		mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0 \text{ V}$		(0.003		mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0 \text{ V}$		-	TBD		mA
Full update time		25 °C			3		sec
Fast update time	-	25 °C			1.5		sec
Partial update time		25 °C			0.42		sec
Sleep mode current	Islp_V _{CI}	DC/ DC off No clock No input load Ram data retain		_	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/ DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:


Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by GOOD DISPLAY.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

	Pin Name						
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA	
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA	
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA	

Note: (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	1	Data bit	Н	L

Note: (1) L is connected to VSS and H is connected to VDDIO

- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

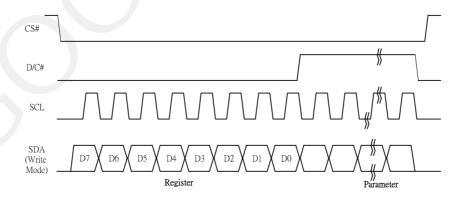


Figure 6-1 : Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS # is pulled low, the first byte sent is command byte, D/C# is pulled low. After com mand byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

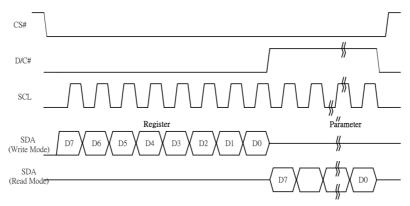


Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

 Function
 SCL pin
 SDA pin
 D/C# pin
 CS# pin

 Write command
 ↑
 Command bit
 Tie LOW
 L

 Write data
 ↑
 Data bit
 Tie LOW
 L

Table 6-3: Control pins status of 3-wire SPI

Note: (1) L is connected to VSS and H is connected to VDDIO

(2) stands for rising edge of signal

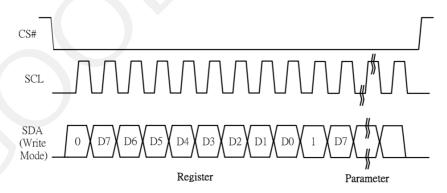


Figure 6-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command by te, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1.After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

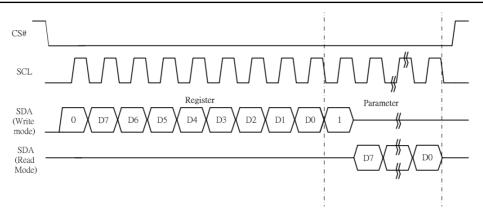
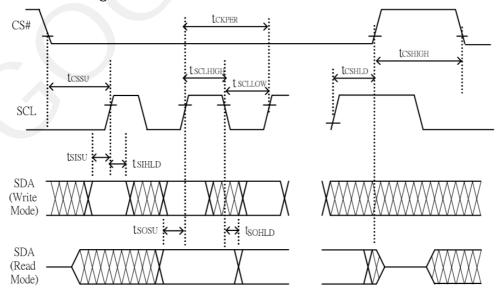


Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF


Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)	-	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	9297	323	ns
tсsнісн	Time CS# has to remain high between two transfers	100	27.0	150	ns
tsclhigh	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-		ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	350	161	ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)	-	77.29	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	Ø₹8	0.5	ns
tcsнigh	Time CS# has to remain high between two transfers	250	79-3	948	ns
tsclHigh	Part of the clock period where SCL has to remain high	180	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	300	386	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	(4)	ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	(55)	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. Command Table

_	man		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
1997	100	UI	- 22	100	700	100	800	100	125	774	Driver Output control], 296 MU	X
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				tting as (A	
0	1		0	0	0	0	0	0	0	150100				55 (03/6)	
0	1		0	0	0	0	0	B ₂	B1	2 12 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change s SM=0 [PC G0, G1, G interlaced SM=1,	nning sequence is tagence is canning copper.	uence and	nnel, gat i2, G3, nnel, gat i33, G2, te driver	
0		03	0	0	0	0	0	0	1	1	Gate Driving voltage	TB = 1, so	driving vo		
0	1		0	0	0	A ₄	Аз	A ₂	A ₁	A ₀	Control	A[4:0] = 0			
														0V to 20V	
												A[4:0] 00h	VGH 20	A[4:0] 0Dh	VGH
												00h	10	0Eh	15 15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	10h	17
												07h	12		-
												07h		12h 13h	17.5
												07h	12.5 12	13h	18
															18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
	1 1											0Bh	14	Other	NA
												0Ch	14.5	1	

NA/4	man D/C#	Service Control	D7	De	DE	D4	Da	Da	D4	DA	Comm	aand		Description
		-	1100	D6	D5	D4	D3	D2	D1	D0	Comn	2000000		Description
0	0	04	0	0	0	0	0	1	0	0		e Driving	voltage	Set Source driving voltage
)	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Contro	וכ		A[7:0] = 41h [POR], VSH1 at 15V B [7:0] = A8h [POR], VSH2 at 5V.
)	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀				C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Remark: VSH1>=VSH2
17	/B[7]	= 1						АГ	7]/B[7	71 = 0)			C[7] = 0,
SH	11/VS		oltag	je se	tting	from	2.4V	VS				e setting	from 9V	VSL setting from -5V to -17V
	B[7:0]	VSH	1/VSH2	A/E	3[7:0]	VSH1	/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH2	[C[7:0] VSL
0.00	8Eh	PERSON.	2.4	3 0000	\Fh	20,000	.7		23h		9	3Ch	14	0Ah -5
_	8Fh	_	2.5	-	30h		.8		24h		9.2	3Dh	14.2	0Ch -5.5
	90h 91h	-	2.6		31h 32h		6	-	25h 26h	+	9.4	3Eh 3Fh	14.4 14.6	0Eh -6
_	92h		2.8	_	33h	_	.1	-	27h	+	9.8	40h	14.8	10h -6.5
	93h		2.9	-	34h		.2		28h		10	41h	15	12h -7
_	94h		3		35h		.3		29h		10.2	42h	15.2	14h -7.5
_	95h		3.1		36h		.4	S	2Ah		10.4	43h	15.4	16h -8
	96h 97h	_	3.2	- 00	37h 38h	223	.5	II.	2Bh 2Ch	-	10.6	44h 45h	15.6 15.8	18h -8.5 1Ah -9
	98h		3.4	- 0	39h	193	.7		2Dh		11	46h	16	1Ch -9.5
_	99h		3.5		BAh	35%	.8		2Eh		11.2	47h	16.2	1Eh -10
_	9Ah		3.6	-	Bh	-	.9		2Fh		11.4	48h	16.4	20h -10.5
	9Bh 9Ch	_	3.7	_	SCh SDh		7	-	30h	+	11.6	49h 4Ah	16.6 16.8	22h -11
	9Dh	-	3.9	1.0	Eh		.2		32h	+	12	4Bh	17	24h -11.5
	9Eh		4	E	BFh	- 77	.3	-	33h		12.2	Other	NA	26h -12
	9Fh	-	4.1	-	COh		.4	34h 12.4		28h -12.5				
_	A0h A1h		4.2		21h 22h		.6	0	35h 36h	+	12.6			2Ah -13
	A2h		4.4		3h	10.1	.7	1-	37h	+	13			2Ch -13.5 2Eh -14
	A3h	100	4.5	C	24h		.8		38h	7	13.2			30h -14.5
_	A4h	_	4.6		Sii	ij.	.9		391		13.4			32h -15
_	A5h	-	4.7	17.	26h		8		3Ah	1	13.6			34h -15.5
_	A6h A7h		4.8 4.9	-	7h 28h		.1		3Bh	4	13.8			36h -16
	A8h		5	_	09h	_	.3							38h -16.5
24	A9h	-	5.1		Ah		.4							3Ah -17
_	AAh	_	5.2	_	Bh	_	.5							Other NA
	ABh ACh	-	5.3		Ch CDh	155	.7							
_	ADh		5.5		Eh		.8							
d	AEh		5.6	0	ther	N	IA							
)	0	08	0	0	0	0	1	0	0	0		Code Set Program	ting	Program Initial Code Setting
												. ograni		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
)	0	09	0	0	0	0	1	0	0	1		Register	for Initial	Write Register for Initial Code Setting
)	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Code	Setting		Selection
)	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	1			A[7:0] ~ D[7:0]: Reserved
	100				1,210,000	-			Jenne 1	A CONTRACTOR	-			Details refer to Application Notes of Initial
)	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-			Code Setting
)	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
)	0	0A	0	0	0	0	1	0	1	0		Register Setting	for Initial	Read Register for Initial Code Setting

om /w#	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		Phase 1, Phase 2 and Phase
0	1	-	1	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	Control	for soft start current a	CONTROL BETWEEN THE SELECTION OF THE SEL
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	production of the control of the con	A[7:0] -> Soft start se	tting for Phase1
)	1		1	-				-	C ₁	Co		= 8Bh [POF	
	- 10			C ₆	C ₅	C ₄	C ₃	C ₂		775		B[7:0] -> Soft start se = 9Ch [POI	
)	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] -> Soft start se	tting for Phase3
												= 96h [POF D[7:0] -> Duration se	
												= 0Fh [POF	R]
												Bit Description	of each byte:
												A[6:0] / B[6:0] /	C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Mi	n Off Time Setting of GDR
												Біцэ.ој	[Time unit]
												0000	NA
												0011	
												0100	2.6
												0101	3.2
												0110	3.9
											· ·	0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
						ľ						1111	16.5
												D[5:4]: duration D[3:2]: duration	setting of phase n setting of phase 3 n setting of phase 2 n setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
	0	10	0		_	4	0	0	0	0	Doop Clean made	Doon Class re-	do Control:
1	1072	10	8000	0	0	1	0	1073	- 5		Deep Sleep mode	Deep Sleep mo	
	1		0	0	0	0	0	0	A ₁	Ao			nal Mode [POR]
													r Deep Sleep Mode 1
												The second secon	
												After this comm	r Deep Sleep Mode 2 and initiated, the chip v
												keep output hig Remark:	
													eep mode, User require SET to the driver

Com	man	d Ta	ble							,		70
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	Aı	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	As	A4	0	A ₂	A ₁	A ₀		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

-	man D/C#	-	-	D6	D5	D4	D3	D2	D1	DO	Command	Description		
				0	0	4	0	4		4	Programme III and I			
0	0	15	0	0	0	0	0	1 A ₂	0 A ₁	1 A ₀	VCI Detection	VCI Detection A[2:0] = 100 [POR] , Detect level at 2.3V		
9897			0.856	188.5	THE STATE OF THE S	312	6660	Balling.	caesteat	STREET		A[2:0] : VCI level Detect		
												A[2:0] VCI level		
												011 2.2V		
												100 2.3V		
												101 2.4V		
												110 2.5V		
												111 2.6V		
												Other NA		
												The command required CLKEN=1 ar ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from Status Bit Read (Command 0x2F).		
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection		
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external		
•	腰		/ M	/ 10	7.5	7.14	75	112	25.34	7.0		temperatrure sensor		
						<u> </u>						A[7:0] = 80h Internal temperature sensor		
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.		
0	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Write to	A[7:0] = 7Fh [POR]		
											temperature register)			
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.		
1	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Read from	, , , , , , , , , , , , , , , , , , , ,		
											temperature register)			
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature		
0	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo	to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR],		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	Selisoi)	C[7:0] = 00h [POR],		
												A[7:6] A[7:6] Select no of byte to be sent		
												00 Address + pointer		
												01 Address + pointer + 1st parameter Address + pointer + 1st parameter +		
												2nd pointer		
												11 Address		
												A[5:0] – Pointer Setting B[7:0] – 1 st parameter		
												C[7:0] – 1 parameter		
												The command required CLKEN=1.		
												Refer to Register 0x22 for detail.		
												After this command initiated, Write Command to external temperature		
												sensor starts. BUSY pad will output high during operation.		
^	•			_							IOi-i Di			
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]		
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	on
0	0	20	0	0	1	0	0	0	0	0	Master Activation	The Displationated at BUSY pad operation.	isplay Update Sequence ay Update Sequence Option is R22h. I will output high during User should not interrupt this to avoid corruption of panel
											L		
0	0	21	0	0	1	0	0	0	0	1	Display Update Control		ent option for Display Update
0	1		A 7	A ₆	A 5	A 4	Аз	A ₂	A ₁	Ao]1	A[7:0] = 00 B[7:0] = 00	
0	1		B ₇	0	0	0	0	0	0	0		252264577805522577	UNICE IN CASE OF THE
													RAM option
											0000	Normal	
											1000	Bypass RAM content as 0 Inverse RAM content	
												0000 0100 1000 B[7] Source 0 Ava	RAM option Normal Bypass RAM content as 0 Inverse RAM content Re Output Mode Milable Source from S0 to S179 Milable Source from S8 to S169
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	written into command advance a	of Write RAM(BW) = 1

	man		See London	n.c	144						C	Description
15-71	D/C#	The same	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	1	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activation A[7:0]= FFh (POR)
												Operating sequence Parameter (in Hex)
												Enable clock signal 80
												Disable clock signal 01
												Enable clock signal C0 → Enable Analog
												Disable Analog → Disable clock signal 03
												Enable clock signal → Load LUT with DISPLAY Mode 1 91 → Disable clock signal
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
												For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.

	man D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Descript	tion		-
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	for durat VCOM v The sen register The com ANALOG Refer to	tion defined value. sed VCOM nmand requ GEN=1 Register 0 ad will outp	I in 29h b I voltage uired CLb x22 for d	
0	0	29	0	0	4	0	4	0	0	4	VCOM Sense Duration	Ctabling	time between	on onto	ring VCOM
0	1	29	0	0	0	0	1	0.29235	0 A ₁	1 A ₀	VCOM Sense Duration		mode and		ring VCOM
U	1		U	1	U	U	A ₃	A ₂	Aı	Ao		A[3:0] =	9h, duratio	n = 10s.	(3:0]+1) sec
_			-	_								- PARTITION OF			Pana v
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program	VCOM re	gister into	o OTP
												Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.	letail.		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM registe	er from M	ICU interface
0	1		A ₇	A ₆	A 5	A ₄	A3	A ₂	A ₁	Ao	Willia V COM (Cgloto)		00h [POR]		incomaco
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
											38h	-1.4	74h	-2.9	
											3Ch	-1.5	78h	-3	
												40h	-1.6	Other	NA

100000	100000	d Ta	1000			1000	-	2001		1/1/2	Campan d	Description
127.47	D/C#	15147-3	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
1	0	2D	0 A7	0 A ₆	1 A5	0 A4	1 A3	1 A2	0 A1	1 Ao	OTP Register Read for Display Option	Read Register for Display Option:
1	1			B ₆	B ₅	B ₄	B ₃	B ₂	B ₁		5-2-7	A[7:0]: VCOM OTP Selection
	- 80		B ₇	15-026	19 30 18	50110-4		5029	1000	B ₀		(Command 0x37, Byte A)
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0]: VCOM Register
1	1	_	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		(Command 0x2C)
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		(
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		C[7:0]~G[7:0]: Display Mode
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		(Command 0x37, Byte B to Byte F) [5 bytes]
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 bytes]
1	1		l ₇	16	l ₅	14	l ₃	12	11	lo.		H[7:0]~K[7:0]: Waveform Version
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		(Command 0x37, Byte G to Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀	-7	[4 bytes]
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	OSEI ID I Cad	A[7:0]]~J[7:0]: UserID (R38, Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte J) [10 bytes]
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
1	1	- 1	G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
100	- 1						-			-		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		
1	1		17	16	15	14	13	12	l ₁	l ₀		
1	1	0.5	J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀	0.1. 5.5.	In the transport
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0]
1	1		0	0	A ₅	A ₄	0	0	A ₁	Ao		0: Ready
												1: Not Ready
												A[4]: VCI Detection flag [POR=0]
												0: Normal 1: VCI lower than the Detect level
					l ,							A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal
												1: BUSY A[1:0]: Chip ID [POR=01]
												A[1.0]. Chip ID [FOR-01]
												Remark:
												A[5] and A[4] status are not valid after
												RESET, they need to be initiated by command 0x14 and command 0x15
		4										respectively.
_											L	adi 6 - 5
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
											3-	The contents should be written into RA
												before sending this command.
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during
	1			1	l .	1	1			I	I	operation.

	man									20///24	I .	The state of the s
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
_												<u> </u>
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [227 bytes], which contains the content of
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		FR and XON[nXY]
0	1				.,				:	:		Refer to Session 6.7 WAVEFORM SETTING
		_					_					
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	33	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	CNC Status Neau	A[15:0] is the CRC read out value
1	1	-	A15	A14 A6	A ₁₃	A12	A ₁₁	A10	A ₁	A ₀		1
197590	0	36	0	0	10000	1 60	0	1000	242	0	Dragram OTD salestion	Dragram OTD Salastian assertling to the
0	U	30	U	U	1	1	U	1	1	U	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1.
												Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
												Later 2 17 2 27 2 2 3
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		A ₇	0	0	0	0	0	0	0	Орион	0: Default [POR]
0	1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		1: Spare
0	1	-	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1	-	0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	-	0: Display Mode 1 1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		1. Dioplay Wood 2
0	1		17	16	15	14	l ₃	12	lı.	lo	-	F[6]: Ping-Pong for Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppor for Display Mode 1

		d Ta		DA			D2	Do.	D.	-	Command	Description	
k/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		
0	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao		A[7:0]]~J[7	:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Domarka: Al	[7:0] . [[7:0] san be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		OTP	[7:0]~J[7:0] can be stored in
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-	O I I	
0	1	-	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo			
	-		_	-		-		_	-				
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo			
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho			
0	1		17	16	15	14	13	12	I ₁	lo			
0	1		J ₇	J 6	J 5	J ₄	J ₃	J ₂	J ₁	Jo			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP progra	m mode
0	1		0	0	0	0	0	0	A ₁	Ao	, programman		Normal Mode [POR]
	•			_					2.11	7.0			Internal generated OTP
												programmin	g voltage
												. Hoor is roa	wired to EVACTI V follow th
													uired to EXACTLY follow the ode sequences
												TOTOTOTIOG OC	oue ocquerioco
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select borde	er waveform for VBD
0	1	00	A7	A ₆	A5	A4	0	0	A ₁	Ao	Border Wavelerin Control		[POR], set VBD as HIZ.
۱			~	70	73	∕ \4	0	U	A	70			ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level,
												10	Defined in A[5:4] VCOM
												11[POR]	HiZ
											1	TIFON	TIIZ
												A [5:4] Fix L	evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												Δ [1·0] GS T	ransition setting for VBD
												VBD Level S	
												00b: VCOM	; 01b: VSH1;
												10b: VSL; 1	1b: VSH2
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
									-			11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LI	IT and
000	17071	JI.	297.	594	7.63	225	170000	20	3	691	End Option (LOF 1)		should be set for this
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao			programmed into Waveforr
												setting.	
												22h Norr	
													rce output level keep
												prev	ious output before power of

/W#	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on				
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RA	M Option				
0	1		0	0	0	0	0	0	0	Ao		0 : Read RAM0x24	: Read RAM corresponding to				
						Loss						1	9 80 8495	42 20st	Sanatigal		
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		ne start/en				
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position		ddress in unit for RA		cuon by a		
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[5:0]: X	SA[5:0], X SA[5:0], XI	Start, POF			
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	ne start/en	d position	s of the		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window a	window address in the Y				
0	1		0	0	0	0	0	0	0	A ₈		address unit for RAI		M			
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	1	A[8:0]: YS	SA[8:0], Y	Start, POF	R = 000h		
0	1		0	0	0	0	0	0	0	B ₈			B[8:0]: YEA[8:0], YEnd, POR = 127h				
0	2000-20				201	000				12-00			e RED RA				
0	1		A7	A 6	A 5	A4	0	A2	A ₁	Ao	Regular Pattern	A[6:4]: Step of al	1st step v ep Height, ter RAM ir	POR= 00	0		
												according A[6:4]	1 000 MONOR NO.	A[6:4]	Height		
												000	Height 8	100	128		
												001	16	101	256		
												010	32	110	296		
											, v	011	64	111	NA		
												Step of all according	ep Width, ter RAM ir to Source	X-directi	on		
													Width		Width		
												000	8	100	128		
					1							001	16	101	176		
													0.0	4 4 4	176		
												010	32	110	NA		
												010 011	32 64	110 111			

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description				
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for					
0	1	74	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern		A[7:0] = 00h [POR]			
												A[6:4]: St	1st step verse step Height, ter RAM in to Gate	POR= 00	0	
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011	64	111	NA	
													ter RAM in to Source Width 8		Width 128	
												and the second s) DECK		100000000	
												001	16	101	176	
												010	32 64	110	NA	
												011	04	111	NA	
												During op high.	eration, B	USY pad	will output	
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X	
0	1	7.	0	0	A ₅	A4	Аз	A ₂	A ₁	Ao	counter	address i	n the addr	ess count	er (AC)	
				,	<i>_</i>	7.4	715	112	- N	710		A[5:0]: 00	h [POR].			
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y	
0	1		A7	A6	A ₅	A ₄	Аз	A ₂	A ₁	Ao	counter	address in	n the addr	ess count		
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	0h [POR].		100 10000	
0	0	7F	0	1	1	1	1	1	1	1	NOP	does not module.	mand is ar have any e it can be u	effect on t used to ter	he display minate	

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	8-1
CR	Contrast Ratio	Indoor	8:1		ı		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	ı	sec	
Life		Topr		1000000times or 5years			

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sheet status
Product specification	This data sheet contains final product specifications.
	Limiting values

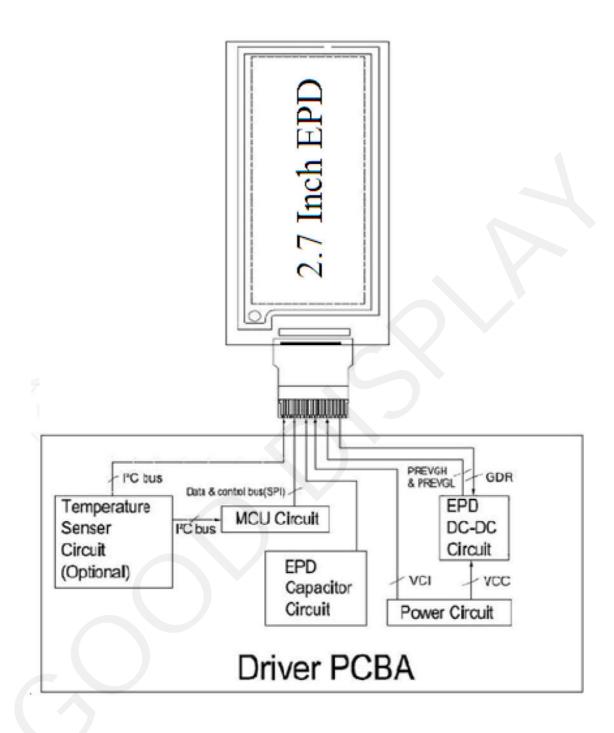
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC

134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

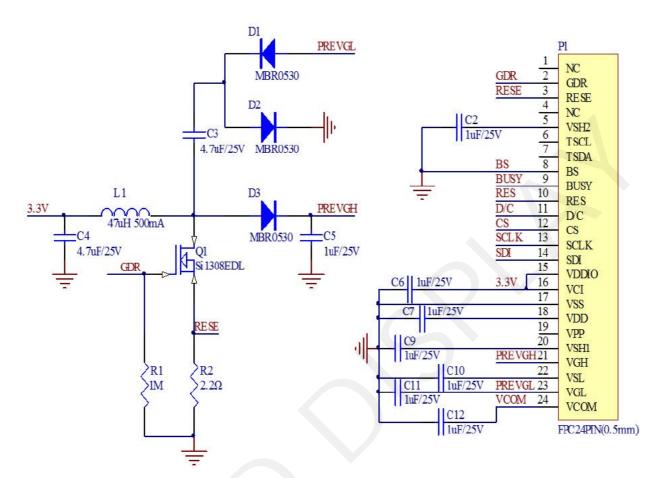
Application information

Where application information is given, it is advisory and does not form part of the specification.

10.Reliability test


NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note:

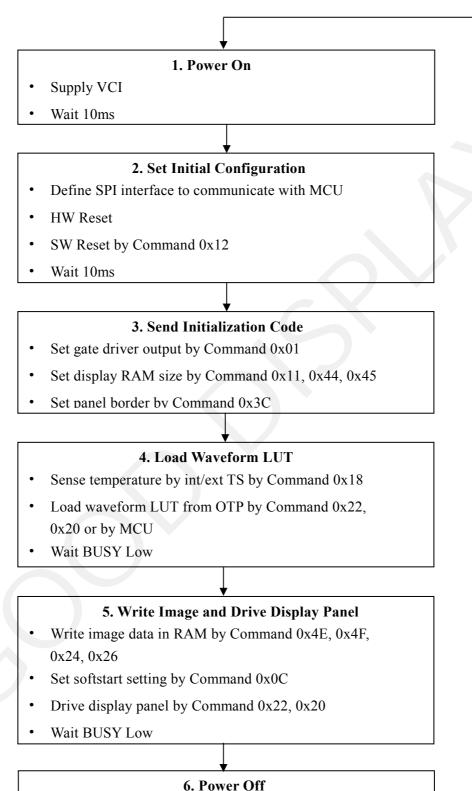

Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Reference Circuit

13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

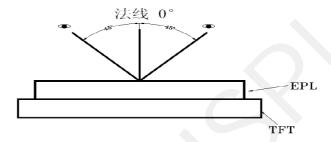

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link: https://www.good-display.com/product/53/

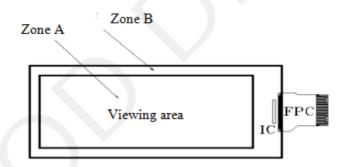
14. Typical Operating Sequence

14.1 Normal Operation Flow

- Deep sleep by Command 0x10
- Power OFF


15.Inspection condition 15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10\%$ RH


15.2 Illuminance

 $Brightness: 1200 {\sim} 1500 LUX; distance: 20-30 CM; Angle: Relate~30° surround.$

15.3 Inspection method

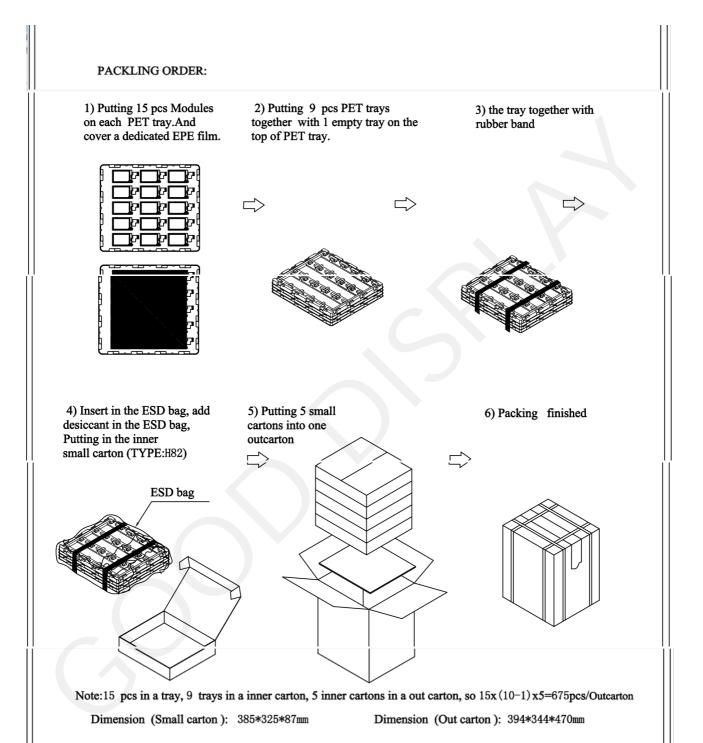
15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm on N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm,W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

15.5.2 Appearance inspection standard


NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $<$ D ≤ 0.4 mm, N ≤ 3 D >0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm,Y≤0.5mmAnd without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

			_		
8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC ≤ 1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html