

RS-FSXCS-N01-*

Small ultrasonic integrated weather station

1.

Product Introduction	3 1.1
Product Overview	3 1.2
Features	
3 1.3 Main Technical Specifications	
3 1.4 Product Selection	
5 2. Equipment Dimensions	5
3. Equipment Installation Instructions	6
3.1 Equipment Pre-installation Inspection	
6 3.2 Installation Method	
7 3.3 Interface Description	
8 3.4 485 Field Wiring Instructions	
8 4. Configuration Software Installation and Use	
4.1 Software Selection	
8 4.2 Parameter Setting	8 5.
Communication Protocol	
Communication Parameters	
Frame Format Definition	9 5.3
Communication Register Address Description	10
5.4 Communication Protocol Example and Explanation	11
6. Common Problems and Solutions	12
7. Contact Information	13 8.
Document History	13

1. Product Introduction

1.1 Product Overview

This small integrated weather station can be widely used in environmental detection, and can collect wind speed, wind direction, temperature and humidity, noise,

PM2.5 and PM10, atmospheric pressure, light, and rainfall are integrated into one device. The device adopts the standard ModBus-RTU communication protocol.

RS485 signal output, the communication distance can reach up to 2000 meters, the data can be uploaded to the customer through 485 communication

Monitoring software or PLC configuration screen, etc., also support secondary development.

For devices with built-in electronic compass, there is no need for orientation during installation, just ensure horizontal installation.

It is used in mobile occasions such as marine vessels and automobile transportation, and there is no direction requirement during installation.

This product is widely used in measuring environmental temperature and humidity, wind speed and direction, noise, air quality, atmospheric pressure, light

It is suitable for various occasions with different rainfalls, safe and reliable, beautiful in appearance, easy to install and durable.

1.2 Features

This product is small in size, light in weight, made of high-quality UV-resistant material, has a long service life, and uses a highly sensitive probe.

The signal is stable and the accuracy is high. The key components are imported, stable and reliable, with wide measurement range, good linearity and waterproof

It has the characteristics of good performance, easy use, easy installation and long transmission distance.

- ÿ Adopting multi-collection device integrated design, easy to install;
- ÿ Wind speed and direction are measured using ultrasonic principles, with no angle restrictions and 360° omnidirectional, and can obtain wind speed and direction at the same time.

data;

- \ddot{y} Noise collection and measurement accuracy, with a range of up to 30dB~120dB;
- ÿ PM2.5 and PM10 are collected simultaneously, with a range of 0-1000ÿg/m3 and a resolution of 1ÿg/m3. Unique dual-frequency data collection and

Automatic calibration technology, consistency can reach ±10%;

- ÿ Measure ambient temperature and humidity. The measuring unit is imported from Switzerland and the measurement is accurate;
- $\ddot{\text{y}}$ Wide range 0-120kPa air pressure range, can be applied to various altitudes;
- $\ddot{\text{y}}$ Adopting dedicated 485 circuit, the communication is stable;
- ÿ For devices with built-in electronic compass, there is no direction requirement during installation and they can be installed horizontally

1.3 Main technical indicators

DC power supply (default)	10-30VDC			
Maximum power consumption	RS485 output	0.7W		
	Wind speed 2	±0.5+2%FSÿ60%RH,25ÿÿ		
	wind direction	±3°ÿ60%RH,25ÿÿ		
	humidity	±3%RH(60%RH,25ÿ)		
Accuracy	temperature	±0.5ÿÿ25ÿÿ		
	Atmospheric pressure	±0.15kPa@25ÿ 101kPa		
	noise	±0.5dB (at reference pitch, 94dB@1kHz)		

RS-FSXCS-N01-*Ultrasonic integrated weather station user manual V1.8

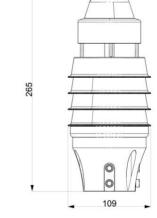
		Particle counting efficiency:
	DMO 5	50%@0.3ÿmÿ98%@>=0.5ÿmÿ
	PM2.5	PM2.5 accuracy: ±3%FS (@100ÿg/m3, 25ÿ,
		50%RHÿ
	CO2	±(50ppm+ 3%F·S) (25ÿ)
	Light intensity	±7%(25ÿ)
	Total solar radiation	ÿ±3% @150W/m²
	Wind speed	0~40m/s, start wind speed is 0.5m/s
	wind direction	0~359°
	humidity	0%RH~99%RH
	temperature	-40ÿ~+80ÿ
Poore	Atmospheric pressure	0-120kPa
Range	noise	30dB~120dB
	PM10 PM2.5	0-1000ÿg/m3
	CO2	0-5000ppm
	Light intensity	0-200,000 Lux
	Total solar radiation	0~1800W/m²
	temperature	ÿ0.1ÿ/y
	humidity	ÿ1%/y
	Atmospheric pressure	-0.1 kPa/y
	noise	ўЗdВ/у
Long-term stability	PM10 PM2.5	ÿ1%/y
	CO2	ÿ1%/y
/	Light intensity	ÿ5%/y
	Total solar radiation	ÿ±3%
	Wind speed	1s
	wind direction	1s
	temperature	ÿ25s (1m/s wind speed 2)
	humidity	ÿ8s (1m/s wind speed 2)
Response time 1	Atmospheric pressure	ÿ2s
	noise	ÿ3s
	PM10 PM2.5	ÿ90s
	CO2	ÿ90s
	Light intensity	ÿ2s
	•	

RS-FSXCS-N01-*Ultrasonic integrated weather station user manual V1.8

	Typical accuracy of	ÿ10s		
	global solar radiation	±5% (from PeopleSoft Laboratory data)		
	Resolution	Standard 0.1mm		
Optical rainfall parameters	Maximum instantaneous rainfall	24mm/min		
	Rain Sensing Diameter	6cm		
	Typical Accuracy	±4% (from PeopleSoft Labs data)		
Optical and pulse rainfall parameters3	Resolution	Standard 0.1mm		
	Measuring range	ÿ4mm/min		
Protection level	IP54			
Output signal	RS485 (standard ModBus communication protocol)			

The performance data stated above were obtained under test conditions using our test system and software. In order to continuously improve our products, we reserve the right to change design functions and specifications,

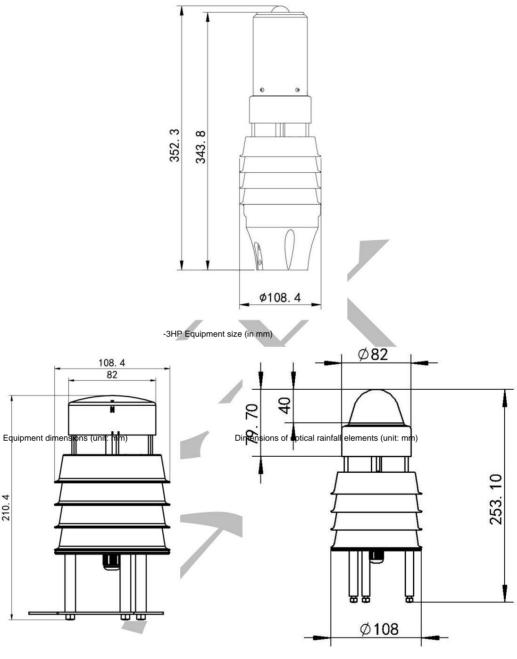
The wind speed is about 1m/s.


3From laboratory indoor simulated rainfall test. Optical rainfall measurement components are optional

1.4 Product Selection

RS-		y			Company Code
	FSXCS-				Ultrasonic integrated weather station
		N01-			485 communication (standard ModBus-RTU protocol)
			3-		Small ultrasonic integrated housing
			3H-		Premium appearance
			3HP-		Optical tipping bucket rainfall appearance
				null	No built-in electronic compass
			1000	СР	Built-in electronic compass function

2. Equipment size


-3H with optical rainfall element dimensions (unit: mm)

¹ The response time is ÿ63 time.

² Wind speed refers to the wind speed at the sensitive material inside the sensor. When the wind speed in the test environment is 10 -2m/ms, the wind direction is perpendicular to the sensor acquisition port

⁻³H Equipment dimensions (unit: mm)

-3 Equipment dimensions (unit: mm)

-3 Dimensions of optical rainfall elements (unit: mm)

3. Equipment installation instructions

3.1 Equipment inspection before installation

Equipment List:

ÿTransmitter equipment 1 set

ÿCertificate of conformity, warranty card

ÿ70cm waterproof male plug 1 piece

ÿ2 white brackets, 2 M4*10 screw nuts, 3 M5*14 hexagonal screws (-3 optional accessories)

ÿ Hexagonal wrench 1 piece (-3H and -3HP optional accessories)

3.2 Installation method

-3HP Model Installation

3.3 Interface Description

DC power supply 10-30V. When wiring the 485 signal line, pay attention to the A/B lines. Do not connect them in reverse.

The addresses cannot conflict.

	Line Color	illustrate	
	brown	Power positive (10-30V DC)	
power supply	black	Negative power supply	
	Yellow (green)	485-A	
communication	blue	485-B	

3.4 485 Field Wiring Instructions

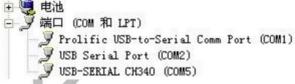
When multiple 485 devices are connected to the same bus, there are certain requirements for field wiring. Please refer to the information package for details.

485 Equipment Field Wiring Manual.

4.Configure software installation and use

4.1 Software Selection

"485 Parameters


Open the data package, select "Debug Software" --- "485 Parameter Configuration Software", find

Configuration Tool" to open it.

4.2 Parameter settings

ÿ. Select the correct COM port (check the COM port in "My Computer - Properties - Device Manager - Ports"),

The figure below lists the driver names of several different 485 converters.

ÿ. Connect only one device and power it on. Click the test baud rate button in the software. The software will test the baud rate of the current device.

and address, the default baud rate is 4800bit/s, and the default address is 0x01.

- ÿ. Modify the address and baud rate according to the needs, and query the current functional status of the device.
- ÿ. If the test fails, please recheck the device wiring and 485 driver installation.

RS-FSXCS-N01-*Ultrasonic integrated weather station user manual V1.8

5. Communication Protocol

5.1 Basic communication parameters

coding	8-bit binary			
Data bits	8-bit			
Parity bit	none			
Stop bits	1 bit			
Error checking	CRC (Redundant Cyclic Code)			
Baud rate	1200bit/sÿ2400bit/sÿ4800bit/sÿ9600bit/sÿ19200bit/sÿ38400bi t/s, 57600bit/s, 115200bit/s can be set, the factory default is 4800bit/s			

5.2 Data frame format definition

Using ModBus-RTU communication protocol, the format is as follows:

Time when initial structure ÿ 4 bytes

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error checking = 16-bit CRC code

End structure ÿ 4 bytes time

Address code: It is the starting address of the transmitter and is unique in the communication network (factory default is 0x01).

Function code: Function indication of the command sent by the host.

Data area: The data area is the specific communication data. Note that the high byte of the 16-bit data comes first!

CRC code: a two-byte check code.

Host inquiry frame structure:

Address code Fo	unction code Registe	r start address Register length (Check code low byte Check o	ode high byte	
1 byte 1 byte		2 bytes	2 bytes	1 byte	1 byte

Slave response frame structure:

A	\ddress cod€	Function code N	lumber of valid bytes	Data area 1 Data a	rea 2 Data area N	Check code low b	yte Check code high byte	
	1 byte 1 byte	1 byte 2 bytes 2	bytes 2 bytes 1 byte					1 byte

5.3 Communication register address description

The contents of the register are shown in the following table (supporting 03/04 function codes):

Register address PLC	or configuration address	content	Support function code	Definition
500	40501	Wind speed value	0x03/0x04	10 times the actual value
501	40502	Wind	0x03/0x04	Actual value (Wind level value corresponding to the current wind speed)
502	40503	Wind direction (0-7 levels)	0x03/0x04	Actual value (the north direction is 0, the clockwise direction is The needle increases the value, due east is 2)
503	40504	Wind direction (0-360°)	0x03/0x04	Actual value (0° clockwise for due north The needle increases in degrees, with due east being 90°)
504	40505	Humidity value	0x03/0x04	10 times the actual value
505	40506	Temperature value	0x03/0x04	10 times the actual value
506	40507	Noise value	0x03/0x04	10 times the actual value
507	40508	PM2.5 value/CO2 value 0x03/0x04		Actual value
508	40509	PM10 value/CO2 value 0x03/0x04		Actual value
509	40510 Atmospheric p	pressure value (unit: kPa,)	0x03/0x04	10 times the actual value
510	40511	Lux value of 20W is 16 bits higher	0x03/0x04	Actual value
511	40512	Lux value of 20W is 16 bits lower	0x03/0x04	Actual value
512	40513	20W light value (unit: hundred	0x03/0x04	Actual value
513	40514	Rainfall value (unit: mm) 0x03/0x04		10 times the actual value
514	40515	Electronic compass angle 0x03/0x	04	100 times the actual value
515	40516	Total solar radiation value 0x03/0	x04	Actual value

Contents of the calibration register

Register Address	content	Support function code	Definition
6000 H	Small Ultrasonic Wind Deflector	0x06	0 represents normal direction
	register		1 represents a 180° direction shift
6001 H	Small ultrasonic wind speed zeroing register	0x06	Write 0xAA, wait 10 seconds, and then the device will be reset to zero.
6002 H Rainfall z	ero adjustment register	0x06	Write 0x5A, the rainfall value is set to zero
6003 H Optical R	ainfall Sensitivity	0x06	The default setting is 11 H. Reducing this setting can increase the rainfall sensitivity.

- **5.4** Communication protocol examples and explanations
- **5.4.1** Example: Read the real-time wind speed value of the transmitter device (address 0x01)

Inquiry frame

Address code	Function code Startin	g address Data length Chec	k code Low byte Check code	High byte	
0x01	0x03	0x01 0xF4	0x00 0x01	0x C4	0x04

Response frame

Address code F	unction code Return	Valid byte number Wind spee	d value Check code Low by	te Check code High byte	
0x01	0x03	0x02	0x00 0x7D	0x78	0x65

Real-time wind speed calculation:

Wind speed: 007D (hexadecimal) = 125 => wind speed = 12.5 m/s

5.4.2 Example: Read the wind direction value of the transmitter device (address 0x01)

Inquiry frame

Address code F	unction code Startin	g address Data length Chec	k code Low byte Check code	High byte	
0x01	0x03	0x01 0xF6	0x00 0x01	0x65	0xC4

Response frame

Address code F	unction code Return	Valid byte number Wind direc	tion value Check code Low	byte Check code High byte	
0x01	0x03	0x02	0x00 0x02	0x39	0x85

Wind direction calculation

Wind direction: 0002 (hexadecimal) = 2 => Wind direction = east wind

5.4.3 Example: Read the temperature and humidity values of the transmitter device (address 0x01)

Inquiry frame

Address code Fu	inction code Starting add	ress Data length Chec	k code Low bit Check co	de High bit	
0x01	0x03	0x01 0xF8 0x00 0x0)2	0x44	0x06

Response frame (for example, the temperature is -10.1 $^{\circ}\text{C}$ and the humidity is 65.8 $^{\circ}\text{RH})$

Address code	Function code N	umber of valid bytes Hum	idity value Temperatur	e value Check code lov	v bit Check code high b	bit
0x01	0x03	0x04	0x02 0x92 0xFF 0x	9B	0x5A	0x3D

Temperature: When the temperature is below 0ÿ, it will be uploaded in the form of complement code

0xFF9B (hexadecimal) = -101 => Temperature = -10.1ÿ

humidity

0x0292 (hexadecimal) = 658 => humidity =

65.8%RH 6. Common problems and solutions

The device cannot connect to the PLC or computer

Possible reasons: 1)

The computer has multiple COM ports, and the selected port is incorrect. 2)

The device address is wrong, or there are devices with duplicate addresses (factory default is all 1). 3) The baud rate, check

mode, data bit, and stop bit are wrong. 4) The host polling interval and waiting

response time are too short, and they need to be set to more than 200ms. 5) The 485 bus is disconnected, or the A and B

lines are connected in reverse. 6) There are too many devices or the

wiring is too long. Power supply should be provided nearby, a 485 enhancer should be added, and a 120ÿ terminal resistor should be added.

7) The USB to 485 driver is not installed or is damaged. 8) The

device is damaged.

Note: To ensure the accuracy of the device, please clean the lower surface of the device's measurement area regularly to keep it clean and free of dust or other foreign matter.

7. Contact Information

Shandong Renke Measurement and Control Technology Co., Ltd.

Marketing Center: 10th Floor, East Building, Building 8, Shuntai Plaza, High-tech Zone, Jinan City, Shandong Province

Zip code: 250101

Tel: 400-085-5807

Fax: (86) 0531-67805165

Website: www.rkckth.com

Cloud platform address: www.0531yun.com

山东仁科测控技术有限公司 官网

欢迎关注微信公众平台, 智享便捷服务

8. Document History

V1.0 Documentation creation

V1.1 Added optical rainfall element

V1.2 Compatible with both rainfall and light elements

V1.3 Parameter update V1.4

Added electronic compass angle value register V1.5

Added total solar radiation parameter Added

V1.6 -3H option Added

V1.7 -3HP option V1.8

Added CO2 parameter